2022 Indiana Collegiate Mathematics Competition
 April 9, 2022
 Indiana Wesleyan University

1. Consider the four lines $l_{1}: x=-3, l_{2}: x=1, l_{3}: y=2$, and $l_{4}: y=-4$. If A is some point in the plane, suppose each of the segments from A to the lines meets perpendicularly at B, C, D, and E respectively (that is, B is on l_{1}, C on l_{2}, etc.). Consider the locus of all points A where

$$
|A B\|A C|=|A D \| A E|
$$

Find an equation describing this locus, and specify as much as possible the type of plane curve it is.
Solution. This is a four-line locus problem, and so we should expect a conic section as the resulting plane curve. The required equation is

$$
|x+3||1-x|=|y+4||2-y|
$$

A number of teams noticed that there are actually two solutions, depending on the signs chosen for the absolute values. One is the hyperbola

$$
(y+1)^{2}-(x+1)^{2}=5
$$

the other is the circle

$$
(x+1)^{2}+(y+1)^{2}=13
$$

Historical note. Compare Apollonius' Conics III. 54 and Descartes' La Géométrie.
2. Find two non-zero functions $f(x)$ and $g(x)$ so that $f^{\prime}(x) \neq 0, g^{\prime}(x) \neq 0$, and

$$
\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g^{\prime}(x)
$$

Solution. By the product rule, we need f and g to satisfy

$$
f^{\prime} g^{\prime}=f^{\prime} g+g^{\prime} f
$$

For sake of simplicity, choose $f(x)=x$ so that $f^{\prime}(x)=1$. Thus we require

$$
g^{\prime}=g+x g^{\prime}
$$

Hence

$$
\frac{g^{\prime}}{g}=\frac{1}{1-x}
$$

Integrating, we see that $\ln |g(x)|=-\ln |1-x|+C$, so that $|g(x)|=\frac{A}{1-x}$ for some constant A. Choose $A=1$ for convenience, and suppose that g is positive. This gives us functions $f(x)=x$ and $g(x)=\frac{1}{1-x}$. One can easily check that these functions satisfy the requirements. Another pair of functions that work is $e^{2 x}$ and $e^{2 x}$.

Note: This problem was inspired by 1966 Problem 4, which asks a similar question but with quotients.
3. Consider the function $f(x)=\frac{1}{1-e^{-1 / x}}$.
(a) (2 points) Assuming $x>0$, find $f^{\prime}(x)$.

Solution. Standard differentiation techniques yield

$$
f^{\prime}(x)=\frac{e^{-1 / x}}{\left(1-e^{-1 / x}\right)^{2} x^{2}}
$$

(b) (8 points) Compute $\int_{0}^{1} \frac{e^{-1 / x}}{x^{2}\left(1-e^{-1 / x}\right)^{2}} d x$.

Solution. Observe that f is an antiderivative of the integrand, by part (a). Therefore, by the Fundamental Theorem of Calculus,

$$
\begin{aligned}
\int_{0}^{1} \frac{e^{-1 / x}}{x^{2}\left(1-e^{-1 / x}\right)^{2}} d x & =\lim _{a \rightarrow 0^{+}}(f(1)-f(a)) \\
& =\frac{1}{e-1}
\end{aligned}
$$

Note: This problem is simplification of 1971 Problem 3.
4. Let A be a square matrix, and suppose positive integers m and n exist so that $A^{m}=I$ and $A^{n} \neq I$. Find

$$
\operatorname{det}\left(I+A+A^{2}+\ldots+A^{m-1}\right)
$$

Solution. (Revised Solution by Bob Foote) Let $B=I+A+A^{2}+\cdots+A^{m-1}$. Observe that $B(I-A)=$ $I-A^{m}=0$. Since $A \neq I$ there is a vector \vec{v} such that $A \vec{v} \neq \vec{v}$. Let $\vec{w}=(I-A) \vec{v}=\vec{v}-A \vec{v}$. Then $B \vec{w}=B(I-A) \vec{v}=0$. Thus, \vec{w} is a non-zero vector in the null space of B, and so $\operatorname{det} B=0$.

Note: This is the same as 1999 Problem 8.
5. (a) (4 points) Define n ? as the sum of integers from 1 to n. For example, 5 ? $=1+2+3+4+5$. Compute the number of zeros that appear at the end of decimal representation of 2022 ?.

Solution. n ? is a non-standard notation for the nth triangular number, given by

$$
n ?=T_{n}=\frac{(n)(n+1)}{2}
$$

Thus 2022 ? $=1011 * 2023$, which clearly has no zeros at the end of its decimal representation.
(b) (6 points) Define n ! as the product of integers from 1 to n. For example, 5 ! $=1 * 2 * 3 * 4 * 5$. Compute the number of zeros that appear at the end of the decimal representation of 2022 !.

Solution. Divide 2022 by powers of 5 that are less than 2022 , yielding: $404+80+16+3=503$. Thus there are 503 zeros at the end of the decimal representation.
6. Can a group be the union of two of its proper subgroups?

Solution. No. Let G be the group, and suppose by way of contradiction that H and K are proper subgroups with $G=H \cup K$. Take an element h and k from each subgroup, and consider the element $h k$. Then $h k \in H$ or $h k \in K$. Suppose $h k \in H$. Then $h^{-1} h k \in H$, and thus $k \in H$, a contradiction.

Note: This is 1972 Problem 7.
7. If g is a function, denote $g \circ g \circ \ldots \circ g\left(m\right.$ times) as g^{m}. Suppose that $g:[0,1] \rightarrow[0,1]$ is continuous and that there is an m so that for all $x, g^{m}(x)=x$. Show that in fact $g^{2}(x)=x$.

Solution. Note that $g(x)=g(y) \Longrightarrow g^{m}(x)=g^{m}(y) \Longrightarrow x=y$. Therefore g is injective. Any injective real-valued continuous function must be strictly monotone on its domain. If we suppose that g is increasing on $[0,1]$, then for $x \in[0,1]$,

$$
x>g(x) \Longrightarrow g(x)>g^{2}(x) \Longrightarrow \ldots \Longrightarrow g^{m-1}(x)>g^{m}(x),
$$

hence $x>g^{m}(x)=x$, a contradiction. Similarly, if $x<g(x)$, we have $x<g^{m}(x)=x$, another contradiction. Hence $g(x)=x$. If on the other hand g is decreasing, then g^{2} is increasing, and the above argument applies to show $g^{2}(x)=x$. Hence in either case, $g^{2}(x)=x$.

Note: Compare 1977 Problem 1.
8. It is well known that \mathbb{N} and $\mathbb{N} \times \mathbb{N}$ have the same cardinality, and the standard classroom demonstration of this involves a diagonal lines argument. Explicitly give a function between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$, and show that it is bijective.

Solution. One such bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} is

$$
f(m, n)=m+\frac{(m+n-1)(m+n-2)}{2}
$$

To show bijectivity, start with letting x be any natural number. Let T_{a} be the largest triangular number which is smaller than x; if $x=1$, then setting $m=n=1$ clearly suffices. Then set

$$
\left(m^{*}, n^{*}\right)=\left(x-\frac{(a)(a+1)}{2}, a+2-m^{*}\right)
$$

One can verify that $f\left(m^{*}, n^{*}\right)=x$.

Historical note. This function is given by Cantor (1895); you can find it in Contributions to the Founding of the Theory of Transfinite Numbers, published by Dover.

