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1. Consider the four lines l1 : x = −3, l2 : x = 1, l3 : y = 2, and l4 : y = −4. If A is some point in
the plane, suppose each of the segments from A to the lines meets perpendicularly at B, C, D, and E
respectively (that is, B is on l1, C on l2, etc.). Consider the locus of all points A where

|AB||AC| = |AD||AE|.

Find an equation describing this locus, and specify as much as possible the type of plane curve it is.

Solution. This is a four-line locus problem, and so we should expect a conic section as the resulting
plane curve. The required equation is

|x+ 3||1− x| = |y + 4||2− y|

A number of teams noticed that there are actually two solutions, depending on the signs chosen for
the absolute values. One is the hyperbola

(y + 1)2 − (x+ 1)2 = 5;

the other is the circle
(x+ 1)2 + (y + 1)2 = 13. □

Historical note. Compare Apollonius’ Conics III.54 and Descartes’ La Géométrie.

2. Find two non-zero functions f(x) and g(x) so that f ′(x) ̸= 0, g′(x) ̸= 0, and

d

dx
(f(x)g(x)) = f ′(x)g′(x).

Solution. By the product rule, we need f and g to satisfy

f ′g′ = f ′g + g′f.

For sake of simplicity, choose f(x) = x so that f ′(x) = 1. Thus we require

g′ = g + xg′.

Hence
g′

g
=

1

1− x
.

Integrating, we see that ln |g(x)| = − ln |1 − x| + C, so that |g(x)| =
A

1− x
for some constant A.

Choose A = 1 for convenience, and suppose that g is positive. This gives us functions f(x) = x and

g(x) =
1

1− x
. One can easily check that these functions satisfy the requirements. Another pair of

functions that work is e2x and e2x. □

Note: This problem was inspired by 1966 Problem 4, which asks a similar question but with quotients.

3. Consider the function f(x) =
1

1− e−1/x
.

(a) (2 points) Assuming x > 0, find f ′(x).
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Solution. Standard differentiation techniques yield

f ′(x) =
e−1/x(

1− e−1/x
)2

x2 □

(b) (8 points) Compute

∫ 1

0

e−1/x

x2(1− e−1/x)2
dx.

Solution. Observe that f is an antiderivative of the integrand, by part (a). Therefore, by the
Fundamental Theorem of Calculus,∫ 1

0

e−1/x

x2(1− e−1/x)2
dx = lim

a→0+
(f(1)− f(a))

=
1

e− 1
. □

Note: This problem is simplification of 1971 Problem 3.

4. Let A be a square matrix, and suppose positive integers m and n exist so that Am = I and An ̸= I.
Find

det(I +A+A2 + ...+Am−1).

Solution. (Revised Solution by Bob Foote) Let B = I+A+A2+ · · ·+Am−1. Observe that B(I−A) =
I − Am = 0. Since A ̸= I there is a vector v⃗ such that Av⃗ ̸= v⃗. Let w⃗ = (I − A)v⃗ = v⃗ − Av⃗. Then
Bw⃗ = B(I −A)v⃗ = 0. Thus, w⃗ is a non-zero vector in the null space of B, and so detB = 0. □

Note: This is the same as 1999 Problem 8.

5. (a) (4 points) Define n? as the sum of integers from 1 to n. For example, 5? = 1 + 2 + 3 + 4 + 5.
Compute the number of zeros that appear at the end of decimal representation of 2022?.

Solution. n? is a non-standard notation for the nth triangular number, given by

n? = Tn =
(n)(n+ 1)

2
.

Thus 2022? = 1011 ∗ 2023, which clearly has no zeros at the end of its decimal representation. □

(b) (6 points) Define n! as the product of integers from 1 to n. For example, 5! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5.
Compute the number of zeros that appear at the end of the decimal representation of 2022!.

Solution. Divide 2022 by powers of 5 that are less than 2022, yielding: 404 + 80 + 16 + 3 = 503.
Thus there are 503 zeros at the end of the decimal representation. □

6. Can a group be the union of two of its proper subgroups?

Solution. No. Let G be the group, and suppose by way of contradiction that H and K are proper
subgroups with G = H ∪K. Take an element h and k from each subgroup, and consider the element
hk. Then hk ∈ H or hk ∈ K. Suppose hk ∈ H. Then h−1hk ∈ H, and thus k ∈ H, a contradiction.□

Note: This is 1972 Problem 7.

7. If g is a function, denote g ◦ g ◦ ... ◦ g (m times) as gm. Suppose that g : [0, 1] → [0, 1] is continuous
and that there is an m so that for all x, gm(x) = x. Show that in fact g2(x) = x.
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Solution. Note that g(x) = g(y) =⇒ gm(x) = gm(y) =⇒ x = y. Therefore g is injective. Any
injective real-valued continuous function must be strictly monotone on its domain. If we suppose that
g is increasing on [0, 1], then for x ∈ [0, 1],

x > g(x) =⇒ g(x) > g2(x) =⇒ ... =⇒ gm−1(x) > gm(x),

hence x > gm(x) = x, a contradiction. Similarly, if x < g(x), we have x < gm(x) = x, another
contradiction. Hence g(x) = x. If on the other hand g is decreasing, then g2 is increasing, and the
above argument applies to show g2(x) = x. Hence in either case, g2(x) = x. □

Note: Compare 1977 Problem 1.

8. It is well known that N and N×N have the same cardinality, and the standard classroom demonstration
of this involves a diagonal lines argument. Explicitly give a function between N and N× N, and show
that it is bijective.

Solution. One such bijection from N× N to N is

f(m,n) = m+
(m+ n− 1)(m+ n− 2)

2

To show bijectivity, start with letting x be any natural number. Let Ta be the largest triangular
number which is smaller than x; if x = 1, then setting m = n = 1 clearly suffices. Then set

(m∗, n∗) =

(
x− (a)(a+ 1)

2
, a+ 2−m∗

)
.

One can verify that f(m∗, n∗) = x. □

Historical note. This function is given by Cantor (1895); you can find it in Contributions to the
Founding of the Theory of Transfinite Numbers, published by Dover.
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