# Spring 2018 Intersectional Collegiate Mathematics Competition (ICMC) Exam 

Mathematical Association of America - Illinois, Indiana, and Michigan Sections

Show that

$$
\sin (x) \sin (2 x) \ldots \sin (n x) \neq 1
$$

for every real number $x$ and any positive integer $n \geq 2$.

## Solution:

For the above equality to happen one needs $|\sin (n x)|=1$ for any $n$. Since $n \geq 2$ we have

$$
|\sin (x)|=1 \text { and }|\sin (2 x)|=1
$$

which leads to

$$
x=\frac{\pi}{2}+k \pi \text { and } 2 x=\frac{\pi}{2}+l \pi \text { with } k, l \text { integers }
$$

Combining the two one obtains

$$
l-2 k=\frac{1}{2}
$$

which is a contradiction.

Determine the smallest natural number $n$ such that

$$
\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}+\sqrt{n+1}} \geq 100
$$

## Solution:

Rationalizing the denominators one obtains the following telescopic summation:

$$
\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\cdots+\sqrt{n+1}-\sqrt{n} \geq 100
$$

which simplifies to

$$
\sqrt{n+1}-1 \geq 100 \text { and } n \geq 10200
$$

Hence the smallest $n$ is 10200 .

Suppose $a_{1}, a_{2}, \ldots, a_{n}$ are strictly positive real numbers and
$a_{1}^{x}+a_{2}^{x}+\ldots+a_{n}^{x} \geq n$ for every real number $x$. Prove that $a_{1} a_{2} \cdots a_{n}=1$.

## Solution:

Consider the function $f(x)=a_{1}^{x}+a_{2}^{x}+\ldots+a_{n}^{x}$. Notice that $f(0)=n$ and, from the hypothesis, $f(x) \geq f(0)=n$. Therefore $x=0$ is a local minimum. From Fermat's theorem it follows that $f^{\prime}(0)=0$. But

$$
f^{\prime}(x)=a_{1}^{x} \ln \left(a_{1}\right)+\ldots+a_{n}^{x} \ln \left(a_{n}\right) .
$$

Then

$$
f^{\prime}(0)=\ln \left(a_{1}\right)+\ldots+\ln \left(a_{n}\right)=\ln \left(a_{1} a_{2} \cdots a_{n}\right)=0 .
$$

and

$$
a_{1} a_{2} \cdots a_{n}=1 .
$$

Show that if $x+y+z>0$ then

$$
\operatorname{det}\left[\begin{array}{lll}
x & z & y \\
y & x & z \\
z & y & x
\end{array}\right] \geq 0
$$

## Solution:

First we use the following row and column operations which will not change the value of the determinant: Add rows 2 and 3 to row 1 and, then, subtract column 1 from column 2 and column 1 from column 3. With these operations the determinant becomes

$$
\left|\begin{array}{ccc}
x+y+z & 0 & 0 \\
y & x-y & z-y \\
z & y-z & x-z
\end{array}\right|=(x+y+z)\left|\begin{array}{ccc}
1 & 0 & 0 \\
y & x-y & z-y \\
z & y-z & x-z
\end{array}\right|
$$

which is

$$
(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)
$$

and, further,

$$
\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \geq 0
$$

Consider the following sequence defined recursively

$$
x_{1}=\frac{1}{2}, \quad x_{k+1}=x_{k}^{2}+x_{k}, \quad k \geq 1 .
$$

Find the integer part of $S_{100}$ where

$$
S_{100}=\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}+\ldots+\frac{1}{x_{100}+1}
$$

## Solution:

Notice

$$
\frac{1}{x_{k+1}}=\frac{1}{x_{k}}-\frac{1}{x_{k}+1} \text { or } \frac{1}{x_{k}+1}=\frac{1}{x_{k}}-\frac{1}{x_{k+1}} .
$$

Adding up for $k=1 . .100$ we get a telescoping cancellation and

$$
S_{100}=\frac{1}{x_{1}}-\frac{1}{x_{101}}=2-\frac{1}{x_{101}} .
$$

Since $x_{n}$ is increasing and $x_{3}>1$ we have $0<\frac{1}{x_{101}}<1$ and $S_{100}=2-\frac{1}{x_{101}}<2$. So $\left\lfloor S_{100}\right\rfloor=1$.

Consider a semicircle and $A B$ its diameter. Pick two arbitrary points $D$ and $E$ on the semicircle such that the segments $(A D)$ and $(B E)$ intersect at $M$ in the interior of the semicircle. Prove that

$$
|A M| \cdot|A D|+|B M| \cdot|B E|=|A B|^{2} .
$$

## Solution:

First notice that, by dividing by $|A B|^{2}$, the equality to prove becomes

$$
\frac{|A M|}{|A B|} \left\lvert\, \frac{|A D|}{|A B|}+\frac{|B M|}{|A B|} \frac{|B E|}{|A B|}=1\right.
$$

Consider the perpendicular from $M$ to $A B$ and denote by $P$ the intersection of this perpendicular with $A B$.

Notice that the triangles $A M P$ and $A B D$ are similar and the ratio of the segments opposite the congruent angles is the same. Hence

$$
\frac{|A M|}{|A B|}=\frac{|A P|}{|A D|} .
$$

Analogously, notice that the triangles $B M P$ and $B A E$ are also similar and, from there, we infer that

$$
\frac{|B M|}{|A B|}=\frac{|P B|}{|B E|} .
$$

Substituting these into the equality to prove we obtain

$$
\frac{|A P|}{|A D|}\left|\frac{|A D|}{|A B|}+\frac{|P B|}{|B E|}\right| \frac{B E \mid}{|A B|}=\frac{|A P|+|P B|}{|A B|}=\frac{|A B|}{|A B|}=1 .
$$

Suppose a fair six-sided die is rolled and let $X$ denote the outcome of the die roll. Suppose a fair coin is flipped until $X$ heads are obtained. Compute the expected value of the number of flips.

## Solution:

Let $Y=$ the number of coin flips. On average, it takes 2 flips to obtain a head. Hence, on average, it takes $2 X$ flips to obtain $X$ heads.

$$
E[Y]=E[E[Y \mid X]]=E[2 X]=2 E[X]=2(3.5)=7 .
$$

A town has $n$ inhabitants who like to form clubs. They want to form clubs so that every pair of clubs should share a member, but no three clubs should share a member. What is the maximum number of clubs they can form? Illustrate with an example.

## Solution:

Let $c$ be the number of clubs. Since each pair of clubs (but not three) share a member, the number of pairs of clubs cannot be more than the number of people. In other words, $\binom{c}{2} \leq n$. This condition becomes

$$
c^{2}-c-2 n \leq 0
$$

which is a quadratic in $c$ concave upward with two real roots, one positive and one negative. Therefore $c$ must be between zero and the positive root, i.e.
$c \leq(1+\sqrt{1+8 n}) / 2$.
To achieve the equality with the integer part of the bound assign a unique person to each pair of clubs. Each club will have its members based on these assignments. For example, if $n=6$, then $c=4$. Let the people be denoted by $A, B, C, D, E, F$, the clubs by $1,2,3,4$. Based on the assignment

$$
A \text { in } 1,2 \quad B \text { in } 1,3 \quad C \text { in } 1,4 \quad D \text { in } 2,3 \quad E \text { in } 2,3 \quad F \text { in } 3,4,
$$

the members of the clubs are as follows:
1: $A, B, C$
2: $A, C, E$
3: $B, C, F$
4: $D, E, F$.

