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PROBLEM 1 SOLUTION

In constructible geometry, one constructs points, lines, and circles from given points,
lines, and circles, using an unmarked straight edge and compass.

• The straight edge draws a line between points already given, which includes
the line segment connecting them; the line may extend as far beyond either
point as desired. New points are created where the line intersects already
existing lines or circles.
• The compass draws a circle (or a circular arc) centered on a given point with

a radius extending to another point from the center. Again, new points are
created where the circle intersects other circles or lines.

(a) Use the provided straight edge and compass to construct the midpoint M of the
line segment AB given below.

Solution: Draw a circle centered at A that passes through B, as well as a
circle centered at B that passes through A. These two circles will intersect in two
points which we’ll call C and D. Then draw the line segment connecting C and
D. This line segment will intersect AB in a point that we’ll call M . M is the
midpoint of AB. See the figure below.

(b) Use the provided straight edge and compass to construct a square ABCD with
the line segment AB given below as one of its sides. Do not erase any intermediate
steps in your construction.

Solution: Use the straight edge to extend AB to the left. Then draw the circle

centered at A that passes through B. This circle will intersect
←→
AB at B and

another point. Draw a circle centered at this new point that passes through B,
as well as a circle centered at B that passes through this new point. Then draw
the line segment that connects the two points where these circles intersect. This
line segment passes through A and is perpendicular to AB. The corner D of
our square will be one of the points where this line segment intersects the circle
centered at A that passes through B. Finally, draw a circle centered at D that
passes through A and a circle centered at B that passes through A. These two
circles will intersect at A and another point, namely the final corner C of our
square. To complete the square, draw the line segments connecting C with D
and C with B. See the figure on the top of the next page.
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PROBLEM 1 SOLUTION

(c) Given an isosceles right triangle ABC, one can use a compass to construct lunes as
follows. First, one semicircle is formed with the line segment AC as its diameter.
Two other semicircles are formed with AB and BC as their diameters. The lunes
are the shaded shapes in the figure below.

Use the provided straight edge and compass to construct a square whose area is
equal to the area of one of the lunes on the diagram given below. Justify how
you know the square you construct has the appropriate area.

Solution: Let s denote the length of AB. Since triangle ABC is a right isosceles
triangle, the length of AC is then

√
2s.

If T , R, and L denote the areas of the indicated regions in the above figure,
T = 1

2s
2 since it is the area of a triangle with base s and height s,

T + 2R =
1

2
π

(√
2s

2

)2

=
π

4
s2

since T + 2R is the area inside a semicircle with radius
√
2s
2 , and

L+R =
1

2
π
(s

2

)2
=
π

8
s2

since L+R is the area inside a semicircle with radius s
2 . We can use the first two

equations to see that R = π
8 s

2 − 1
4s

2. We can then use this value for R as well
as the third equation given above to see that L, which is the area of the lune, is
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PROBLEM 1 SOLUTION

L = 1
4s

2. Thus, the area of the lune will equal the area of a square that has side

length 1
2s, which is just the length of the line segment from B to the midpoint of

AB. Therefore, to construct a square with area equal to the area of one of the
lunes, we can use our construction from part (a) to construct the midpoint M of
AB and then use our construction from part (b) to construct a square that has
MB as one of its sides. (Alternatively, since triangle ABC is a right isosceles
triangle, the polygon that connects B, the midpoint M of AB, the midpoint N
of AC, and the midpoint O of BC will be a square with side length 1

2s.)
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PROBLEM 2 SOLUTION

Consider the following series
∞∑
n=1

(an)n

where

an =

{
1
31

+ 1
32

+ · · ·+ 1
3n if n is odd.

| sinn cosn| if n is even.

Make a conjecture as to whether the series converges or not, and then prove your
conjecture.

Solution:

This series does converge. To see this, we make a comparison to the series

∞∑
n=1

(
1

2

)n
,

which is a convergent geometric series, since its ratio is 1
2 < 1. We demonstrate that

0 ≤ (an)n ≤
(
1
2

)n
for all n.

If n is odd, then an is the nth partial sum of the geometric series

∞∑
n=1

(
1

3

)n
, which

converges to
1
3

1− 1
3

=
1
3
2
3

= 1
2 . Since the terms of series are non-negative, it follows that

0 ≤ an ≤ 1
2 . Thus 0 ≤ (an)n ≤

(
1
2

)n
, as we desire for the comparison test.

If n is even, then an = | sinn cosn| = 1
2 | sin 2n|. Since | sin 2n| ≤ 1 for all n,

0 ≤ an ≤ 1
2 . Then 0 ≤ (an)n ≤

(
1
2

)n
for all n, as we desire for the comparison test.

We’ve shown that for all n (odd or even), 0 ≤ (an)n ≤
(
1
2

)n
. Hence, by the

comparison test,
∞∑
n=1

(an)n converges.
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PROBLEM 3 SOLUTION

Two students, Joe and Frank, are each asked to independently select a number at
random from the interval [0,1] in such a way that each number in [0,1] is just as likely
to be chosen as any other number in this interval. If a denotes the number chosen
by Joe and b denotes the number chosen by Frank, what is the probability that the
quadratic equation x2 + ax+ b = 0 has at least one real root?

Solution:
Note that x2 +ax+ b = 0 has at least one real root as long as the discriminant, which
is a2 − 4b in this case, is non-negative. Thus, we need to find the probability that
a2−4b ≥ 0, i.e. b ≤ 1

4a
2. Since each student is picking a number from [0, 1] according

to the uniform probability distribution, finding the desired probability is equivalent
to finding the proportion of [0, 1] × [0, 1] where b ≤ 1

4a
2. This region is shaded in

the figure below, where the horizontal axis corresponds to a and the vertical axis
corresponds to b.

The area of the shaded region is ∫ 1

0

1

4
a2 da =

1

12
,

while the area of the entire square is 1. Thus, the desired probability is the ratio of
these areas, namely 1

12 .
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PROBLEM 4 SOLUTION

A multiplicative magic square is an n × n square array of numbers consisting of n2

distinct positive integers (not necessarily consecutive) arranged such that the product
of the n numbers in any of the n rows, n columns, or 2 main diagonal lines is always
the same number. Call this common product the magic product.

(a) Show that the magic product of a 3 × 3 multiplicative magic square must be a
perfect cube.

Solution:
Suppose that the diagram below represents a 3 × 3 multiplicative magic square
with magic product P .

a b c
d e f
g h i

Then P = abc = def = ghi = adg = beh = cfi = aei = gec. Note that a = P
ei ,

b = P
eh , and c = P

eg . Thus,

P = abc

=

(
P

ei

)(
P

eh

)(
P

eg

)
=

P 3

e3ghi

=
P 3

e3P

=
P 2

e3
.

Solving P = P 2

e3
for P , we see that P = e3, making P a perfect cube.

(b) Find an example of a 3 × 3 multiplicative magic square whose magic product is
minimal. Explain how you know this magic product is minimal.

Solution: By the previous part, we know that the magic product must be a
perfect cube. Moreover, the magic product must have at least 9 distinct divisors
because each entry in the magic square is a divisor of the magic product. The
first five perfect cubes, 1, 8, 27, 64, and 125, have 1, 4, 4, 7, and 4 divisors,
respectively. The next perfect cube, 216, has 16 divisors, so it is a candidate
for the minimal magic product. Since the sample array given below is a 3 × 3
multiplicative magic square with magic product 216, 216 is, in fact, the minimal
magic product.

12 1 18
9 6 4
2 36 3

Other multiplicative magic squares with magic product 216 are possible. However,
our solution to the previous part implies that all of them will have a 6 in the middle
square.
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PROBLEM 5 SOLUTION

For any positive integer n, let s(n) be the sum of the first n terms of the sequence

0, 1, 1, 2, 2, 3, 3, 4, 4, . . . , k, k, k + 1, k + 1, . . .

(a) Find a formula for s(n). (Note: Your final formula should not have “. . . ” in it.)

Solution:
This formula relies on the fact that for any positive integer k, the sum of the
integers from 1 to k is 1

2k(k + 1).
We’ll first consider the case when n is odd. In this situation,

s(n) = 0 + 1 + 1 + 2 + 2 + · · ·+ n− 1

2
+
n− 1

2

= 2

(
1 + 2 + · · ·+ n− 1

2

)
= 2

(
1

2

(
n− 1

2

)(
n− 1

2
+ 1

))
=

(
n− 1

2

)(
n+ 1

2

)
=
n2 − 1

4

When n is even,

s(n) = 0 + 1 + 1 + 2 + 2 + · · ·+
(n

2
− 1
)

+
(n

2
− 1
)

+
n

2

=
(

1 + 2 + · · ·+
(n

2
− 1
))

+
(

1 + 2 + · · ·+
(n

2
− 1
)

+
n

2

)
=

(
1

2

(n
2
− 1
)(n

2

))
+

(
1

2

(n
2

)(n
2

+ 1
))

=

(
1

2

(
n− 2

2

)(n
2

))
+

(
1

2

(n
2

)(n+ 2

2

))
=

(
n2 − 2n

8

)
+

(
n2 + 2n

8

)
=
n2

4

Thus,

s(n) =

{
n2−1
4 if n is odd.

n2

4 if n is even.

(e) Suppose that m and n are any two positive integers with m > n. Prove that
s(m+ n)− s(m− n) = mn.

Solution:
Note that m+ n and m− n differ by 2n, which is even. Thus, m+ n and m− n
are either both odd or both even. In the case when they are both odd,
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PROBLEM 5 SOLUTION

s(m+ n)− s(m− n) =
(m+ n)2 − 1

4
− (m− n)2 − 1

4

=
(m2 + 2mn+ n2 − 1)− (m2 − 2mn+ n2 − 1)

4

=
4mn

4
= mn

Meanwhile, in the case when they are both even,

s(m+ n)− s(m− n) =
(m+ n)2

4
− (m− n)2

4

=
(m2 + 2mn+ n2)− (m2 − 2mn+ n2)

4

=
4mn

4
= mn
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PROBLEM 6 SOLUTION

Suppose that A is an n× n matrix such that every entry of A is ±1. Show that the
determinant of A is divisible by 2n−1.

Solution:
We will give a proof by induction. For the base case, we will consider the case when
n = 1. Then A = (1) or A = (−1), so det(A) equals 1 or -1, both of which are
divisible by 2n−1 = 20 = 1.

For the inductive hypothesis, assume that for some k ≥ 1, the determinant of any
k × k matrix whose entries are all ±1 is divisible by 2k−1.

For the inductive step, suppose that A is any (k + 1) × (k + 1) matrix such that
every entry of A is ±1. Let B be the (k + 1) × (k + 1) matrix obtained from A by
replacing row 1 of A by the sum of row 1 with row 2. Since each entry of A is 1 or
-1, the entries in the first row of B must all be 2, 0, or -2, while the entries in the
remaining rows of B must all be 1 or -1. Moreover, det(A) = det(B) since the type
of elementary row operation performed does not change the determinant. Therefore,
it suffices to show that det(B) is divisible by 2(k+1)−1 = 2k.

By using cofactor expansion along the first row of B, we see that

det(B) =
k+1∑
j=1

(−1)1+jb1j det(M1j),

where M1j is the k × k matrix obtained from B by removing row 1 and column j.
For each j, M1j is a k × k matrix whose entries are all 1 or -1, so by the inductive

hypothesis, det(M1j) is divisible by 2k−1 for all j. Moreover, for each j, b1j is divisible

by 2 since b1j equals 2, 0, or -2. Thus, for each j, b1j det(M1j) is divisible by 2 ·2k−1 =

2k, so

det(B) =

k+1∑
j=1

(−1)1+jb1j det(M1j)

is also divisible by 2k. Since det(A) = det(B), det(A) is divisible by 2k, completing
our induction.
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PROBLEM 7 SOLUTION

A robot is programmed to shuffle cards in such a way so that it always rearranges
cards in the same way relative to the order in which the cards are given to it. The
thirteen hearts arranged in the order

A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K

are given to the robot, shuffled, and then the shuffled cards are given back to the
robot and shuffled again. This process is repeated until the cards have been shuffled
a total of 7 times. If at this point the order of the cards is

2, 4, 6, 8, 10, Q,A,K, J, 9, 7, 5, 3,

what was the order of the cards after the first shuffle?

Solution:
Let σ denote the permutation implemented by the robot. Then in cycle notation,

σ7 = (A 7 J 9 10 5 Q 6 3 K 8 4 2).

Thus, |σ7| = 13. We claim that this implies that |σ| = 13 as well. To see this, note
that |σ7| = 13 implies that (σ7)13 = e, where e denotes the identity permutation.
Then σ91 = e. Thus implies that |σ| divides 91, meaning that |σ| is 1, 7, 13, or 91.
But |σ| cannot equal 1 or 7 because then σ7 would have to equal e, which it doesn’t.
Moreover, if |σ| was 91, then the least common multiple of the lengths of the cycles
when σ is written in disjoint cycle notation would have to be 91, which would mean
that σ would have to have disjoint cycles of length 7 and 13 or a cycle of length 91,
both of which are impossible with only a total of 13 cards to permute. Therefore, σ
must have order 13. Since σ13 = e, (σ7)2 = σ14 = σσ13 = σe = σ. Hence, in cycle
notation,

σ = (σ7)2 = (A J 10 Q 3 8 2 7 9 5 6 K 4),

so the order of the cards after the first shuffle is

4, 8, Q,K, 9, 5, 2, 3, 7, J, A, 10, 6.
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PROBLEM 8 SOLUTION

Suppose A is a non-empty, closed1 subset of R such that for each a ∈ A, every open
interval that contains a also contains another element of A. Show that A must be
uncountable.

Solution:
First note that A cannot be finite because if it was, then around each element a of A
we would be able to find an open interval small enough so that it contains a but no
other element of A, contradicting the given condition on A. Thus, A must be infinite.

Next, we will show that A cannot be countably infinite via contradiction. Suppose
that A is countably infinite. Then the elements of A can be listed out as a1, a2, a3, . . . .
Let U1 be the open interval (a1 − 1, a1 + 1) around a1. By the condition on A, this
open interval must contain another element in A; without loss of generality, assume
that a2 is in U1 (if not, relabel the elements of A). Next, let U2 be a small enough
open interval around a2 so that the closure of U2 (i.e. the closed interval consisting
of U2 and the corresponding endpoints) is contained inside U1 and so that a1 is not
in the closure of U2. Again, by the condition on A, U2 must contain another element
of A; without loss of generality, assume that a3 is in U2. Now choose an open interval
U3 around a3 such that the closure of U3 is contained in U2 and so that neither a1
nor a2 is contained in the closure of U3. Without loss of generality, assume that a4
is in U3. In general, for each n ≥ 2, find a small enough open interval Un around an
such that

• the closure of Un is contained in Un−1
• a1, a2, . . . , an−1 are not contained in the closure of Un
• an+1 is contained in Un (after a possible relabeling of the points in {an+1, an+2, . . . })

For each n ≥ 1, let Vn = closure(Un) ∩ A. Note that each Vn is closed and bounded,
hence compact. Moreover, V1 ⊃ V2 ⊃ V3 ⊃ · · · . Let V = ∩∞i=1Vn. Since V is the
intersection of a decreasing nested sequence of non-empty compact subsets of A, V is
a non-empty subset of A. However, none of the an’s can be in V since for i ≥ n, an
is not in Vi. Since we’ve arrived at a contradiction, A cannot be countably infinite.
Thus, it must be the case that A is uncountably infinite.

1A is closed in R if and only if R−A consists of the union of any number of open intervals.
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