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(1) Say that an integer n has a super-3 representation if there is a positive integer
m, a sequence of distinct nonnegative integers p1, . . . , pm, and a sequence
a1, . . . , am where each ak is ±1, so that

n =

m∑
k=1

ak · 3pk = a1 · 3p1 + · · ·+ am · 3pm .

For instance, the integer 8 has the super-3 representation 8 = 32− 30 and the
integer −11 has the super-3 representation −11 = −32−31 +30. The number
0 has the empty super-3 representation; i.e., where m = 0 and the sum has
no terms.
(a) Give a super-3 representation of 2015.
(b) Prove that every integer n has a super-3 representation.

Solution:
(a) The number 2015 has the super-3 representation 2015 = 37 − 35 + 34 −

32 − 30.
(b) Without loss of generality we may let n be a nonnegative integer, since

given a super-3 representation of n, we can find a super-3 representation
of −n by changing the signs of all the ak. Now, we prove this by strong
induction on n. As given in the problem statement, 0 has a super-3
representation; this is our base case. Now, let n > 0 and suppose that
every 0 ≤ x < n has a super-3 representation. Then n is either a multiple
of 3, one more than a multiple of 3, or one less than a multiple of 3.
Let q be the nearest multiple of 3 to n, and let r = q/3. Certainly
0 ≤ r < n, so by the inductive step it has a super-3 representation; say

r =
m∑
k=1

ak · 3pk . Then q =
m∑
k=1

ak · 3pk+1; then either n = q, and that sum

is a representation of n, or n = q ± 1. In the latter case,
• if n = q + 1, then n =

∑m
k=1 ak · 3pk+1 + 30 (so am+1 = 1 and

pm+1 = 0)
• if n = q − 1, then n =

∑m
k=1 ak · 3pk+1 − 30 (so am+1 = −1 and

pm+1 = 0)
In any case this gives a super-3 representation of n since the exponents
of 3 are all distinct. Each positive exponent is one more than its corre-
sponding exponent in a known super-3 representation (thus all positive
exponents are distinct), and if one of the exponents is 0, it is the only such
exponent. This proves that n has a super-3 representation, completing
the inductive step and the proof.

Comment: Several other solutions are possible, including different induction
arguments and a construction based on base-3 representations.

(2) Prove that, for every positive integer n,

n∑
k=0

n−k∑
i=0

(
n

k

)(
n− k
i

)
2k+i = 5n.
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First Solution: Rewrite the left hand side as

n∑
k=0

(
n

k

)
2k

n−k∑
i=0

(
n− k
i

)
2i.

Applying the binomial theorem to the interior sum we obtain (2 + 1)n−k =
3n−k, so we find that the left hand side is equal to

n∑
k=0

(
n

k

)
2k3n−k.

Applying the binomial theorem again, we find that the left hand side is equal
to (2 + 3)n = 5n as required.
Second Solution: The term inside the double sum counts the number of
ways to choose, from a group of n people, two disjoint committees A and
B of sizes k and i respectively, and then to choose a (possibly empty) third
committee C from among the members of both committees A and B. The
double sum then adds all these up over all possible values of k and i. Hence
the sum as a whole counts the number of ways to choose from n people two
disjoint committees A and B, and then a third committee C from among the
members of A and B. We can count this number in a different way: Each
person can be either (1) on no committees at all, (2) on committee A only,
(3) on committee B only, (4) on committees A and C, or (5) on committees
B and C. Since each person independently has 5 possible assignments, the
total number of ways to do this is 5n, as required.

(3) Three pairwise perpendicular line segments AB, CD and EF have endpoints
all on a sphere of unknown radius, and intersect inside the sphere at a point
X. Given the lengths AX = 1, CX = 2, EX = 3, and BX = 4, determine,
with proof, the volume of the octahedron with vertices A, B, C, D, E, and
F .

Solution: Since AB and CD intersect, the quadrilateral ACBD is planar
and inscribed in the circle that its plane cuts from the sphere. By the power
of a point theorem, AX · BX = CX · DX, whence 1 · 4 = 2 · DX and
DX = 2. Since AB and CD are perpendicular, the area N of ACBD is
N = 1

2AB · CD = 1
2(5 · 4) = 10.

The same argument shows that 1 · 4 = AX ·BX = EX ·FX = 3 ·FX, and
thus FX = 4

3 . Since EF is perpendicular to the plane containing ACBD, the
octahedron is divided by that plane into two right pyramids with base area
N = 10 and heights EX = 3 and FX = 4

3 respectively. These two pyramids

have volumes 1
3EX ·N = 1

3(3 ·10) = 10 and 1
3FX ·N = 1

3(43 ·10) = 40
9 . Hence

the volume of the octahedron is 10 +
40

9
=

130

9
.

Comment: The argument above can be used to prove the little-known fact
that the power of a point theorem is true in three dimensions as well as in
two.
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(4) You are standing in a room, which we will call Σ, which contains eight light
switches numbered 1 through 8, all in the off position. On the other side of
the door is another room, Λ, which contains eight lights, labeled A through
H. Each switch controls exactly one light. Your goal is to determine which
switches control which lights. You do this by making a number of trials,
which consist of putting some set of switches in room Σ in the on position,
then entering room Λ to discover which lights are on. For instance, one trial
might be to turn switches 1 and 3 to the on position (and all others off) and
observe which lights in room Λ are on (perhaps lights D and H, though of
course you can’t know this ahead of time).
(a) Give a strategy for finding out which switches control which lights using

the smallest possible number of trials. (For this part, you do not need to
prove that the number of trials you use is minimal.)

(b) Prove that your strategy uses the minimal number of trials; that is, prove
that there is no strategy that determines which switches control which
lights using fewer trials.

Solution:
(a) The minimum number of trials is 3. In the first trial, turn on switches 1,

2, 3 and 4; in the second, switches 1, 2, 5, and 6, and in the third, 1, 3, 5,
and 7. Then the light that was on in all three trials is that controlled by
switch 1, that which is on in trials 1 and 2, but not trial 3, is controlled
by switch 2, and so on. It is easy to verify that each light is on in a
difference subset of the trials, so this determines which switches control
which lights.

(b) Observe that if two switches x and y are always on or off together in
our trials, then our trials cannot distinguish which of them control which
light. For instance, if in every trial, switches 1 and 2 are either both on or
both off, and these switches control lights A and B, we will not be able to
determine whether switch 1 controls light A or light B. Therefore, if we
can use a set of trials to determine which switches control which lights,
it must be the case that the function from switches to subsets of tests
given by f(x) = {α | Light x is on in Test α} is one-to-one. Since the
number of subsets of all trials is 2 to the power of the number of trials,
and the number of switches is 8, it follows that there must be at least 3
trials.

Comment: The same argument can be used to show that in the general
case of n switches, we need to use at least dlog2(n)e trials to determine which
switches control which lights.

(5) Recall that a function f : R → R is called C∞ if all of its derivatives exist
everywhere.
(a) Suppose f : R → R is a C∞ function with infinitely many zeros in the

interval [0, 1]. Show that there is some x ∈ [0, 1] such that f (n)(x) = 0
for every integer n ≥ 0 (that is, such that f and all its derivatives vanish
at x).

(b) Give an example of such a function f which is nonconstant on every
interval. (You need not prove that your function works.)
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Solution:
(a) Let a1, a2, . . . be an infinite sequence of zeros of f in the interval [0, 1].

Since every bounded infinite sequence has a convergent subsequence, we
may find such a convergent subsequence b1, b2, . . .. Let x = lim

n→∞
bn.

Certainly, x ∈ [0, 1]. Now, there are either infinitely many bn less than x
or infinitely many bn greater than x; without loss of generality, suppose
the former. It then follows that we may choose an infinite increasing
sequence c1, c2, . . . from among the bn; simply begin with c1 < x, and
continue choosing cn+1 from among the bi, such that cn < cn+1 < x
(We can always do this because otherwise we would have infinitely many
bi which are less than cn, which is impossible since lim

n→∞
bn = x > cn.)

Since this increasing sequence is a subsequence of the bn, it necessarily
converges to x.
Since f is differentiable, it is continuous, and it follows that f(x) =
f( lim

n→∞
cn) = lim

n→∞
f(cn) = 0. Now by Rolle’s theorem, there is a zero

of f ′ between cn and cn+1 for every n ≥ 1; let c
(1)
n be a zero of f ′

between cn and cn+1. Then the sequence c
(1)
1 , c

(1)
2 , . . . is an increasing

sequence of zeros of f ′, and by the squeeze theorem it has limit x. As
f ′ is itself differentiable and thus continuous, it follows as above that
f ′(x) = 0. Continuing by induction, we find that for every n, there is an

increasing sequence c
(n)
1 , c

(n)
2 , . . . of zeros of f (n) with limit x, and hence

that f (n)(x) = 0.
This shows that our chosen x satisfies the required condition.

(b) One such function is given by

f (x) =

{
sin
(
1
x

)
exp

(
− 1

x2

)
x 6= 0

0 x = 0

Comment: The function given above for the second part is a modification of
the classic example of a nonzero function with identically zero Taylor series
at 0.

(6) Recall that a graph is called planar if it can be drawn on the plane in such a
way that no two of its edges cross. Further recall that a graph is c-colorable
(for a positive integer c) if its vertices can be colored with c colors in such
a way that no two adjacent vertices have the same color. The famous Four
Color Theorem says that every planar graph can be 4-colored.

Call a graph k-color-planar if it can be drawn on the plane, and its edges
colored with k colors, in such a way that no two edges with the same color
cross. Thus, a 1-color-planar graph is just a planar graph.

Prove that, for every positive integer k, there is a positive integer ck such
that every k-color-planar graph is ck-colorable. (You may use the Four Color
Theorem in your proof if you wish.)

Solution: Let G be a k-color-planar graph. Each of the k sets of edges with
the same color forms a planar graph on the vertices of G. By the Four Color
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Theorem, each of these graphs can be 4-colored. Doing so, each vertex of
G gets a k-tuple of colors corresponding to its color in each of the k planar
graphs. If we assign a different color to each k-tuple, this gives us a 4k-coloring
of G (since adjacent vertices must differ in at least one coordinate as they are
adjacent in some one of the k planar graphs). Thus, every k-color-planar
graph can be 4k-colored (so ck = 4k works).

Comment: Is this value ck = 4k best possible? We don’t know and would
be interested in a proof either way.

(7) Let S be a finite set and ∗ : S → S be a binary operation on S. Suppose that
∗ satisfies the following two conditions:
• ∗ is associative; that is, for any a, b, c ∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c).
• For any a, b ∈ S, a ∗ (a ∗ (b ∗ a)) = b.

(a) Prove that ∗ is commutative; that is, that for any a, b ∈ S, a ∗ b = b ∗ a.
(b) Prove that |S|, the size of S, is a power of 3.

Solution:
(a) Because ∗ is associative we may omit parentheses without any ambiguity.

Let a, b ∈ S be arbitrary. We have

a ∗ b = a ∗ (a ∗ a ∗ b ∗ a)

= a ∗ a ∗ a ∗ (a ∗ a ∗ b ∗ a) ∗ a
= a ∗ (a ∗ a ∗ a ∗ a) ∗ b ∗ a ∗ a
= a ∗ a ∗ b ∗ a ∗ a
= b ∗ a

where each line uses the fact that a ∗ a ∗ b ∗ a = b (and in the case a = b,
a ∗ a ∗ a ∗ a = a). This shows that ∗ is commutative.

(b) It follows that, for any a, b ∈ S, b ∗ (a ∗ a ∗ a) = (a ∗ a ∗ a) ∗ b = b, so
(a∗a∗a) acts as an identity for ∗. The identity is unique, since if e and f
are both identities, then e = e ∗ f = f . Call the identity e. Furthermore,
since a ∗ a ∗ a = e for every a ∈ S, it follows that a ∗ a is an inverse for a.
Thus, ∗ is an associative binary operation with an identity and inverses,
and therefore (S, ∗) is a group.
Moreover, the fact that a∗a∗a = e for every a ∈ S implies that the order
of every element of S divides 3. It follows by Cauchy’s theorem that |S|
cannot be divisible by any prime other than 3, so |S| is a power of 3.

Comment: In the last step, the fundamental theorem of finite abelian groups
can be used in place of Cauchy’s theorem.

(8) Let f : R → R be twice differentiable on [0, 1], and suppose that f(0) =
f ′(0) = 0 and f(1) = 1. Prove that there is some a ∈ (0, 1) such that

f ′(a)f ′′(a) =
9

8
.
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Solution: Define g(x) = f(x) − x
3
2 . Then g(0) = 0 and g(1) = 0, so by

the mean value theorem, there is some c ∈ (0, 1) such that g′(c) = 0 and

hence f ′(c) =
3

2

√
c. Thus (f ′(c))2 =

9

4
c. Applying the mean value theorem to

(f ′)2 on the interval [0, c], we obtain that there is some a ∈ (0, c) (and hence

in (0, 1)) such that 2f ′(a)f ′′(a) = ((f ′)2)′(a) =
9

4
. Thus f ′(a)f ′′(a) =

9

8
as

required.


