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(1) Let a > 0, and define the following function:

f(x) =

√
a3x− a 3

√
a2x

a− 4
√
ax3

.

• Calculate these limits:

lim
x→0+

f(x) =

lim
x→a

f(x) =

lim
x→+∞

f(x) =

• Find the maximum value of f(x) on its domain.

Solution: The function

f(x) =
a3/2x1/3(x1/6 − a1/6)
a1/4(a3/4 − x3/4)

is continuous on [0, a), with the x→ 0+ limit equal to 0.
For the x→ a limit, the 0

0 form of L’Hôpital’s Rule applies.

lim
x→a

√
a3x− a 3

√
a2x

a− 4
√
ax3

= lim
x→a

a3/2x1/2 − a5/3x1/3

a− a1/4x3/4

(LHR) = lim
x→a

a3/2 12x
−1/2 − a5/3 13x

−2/3

0− a1/4 34x−1/4

=
1
2a−

1
3a

−3
4

= −2a

9

For the x→ +∞ limit, LHR could be used again, but it is easier to notice
f satisfies |f(x)| < Cx−1/4 for large x, so there is a horizontal asymptote
f(x)→ 0 as x→∞.

From the above expression, f(x) < 0 for all x ∈ (0, a) ∪ (a,∞), so the
maximum value is f(0) = 0.

Comment: You may try to find critical points for the second part, but this
is a difficult calculation and a waste of time.

(2) Let f be a function with domain (0,∞) satisfying:
• f(x) = f(x2) for all x > 0
• lim

x→0+
f(x) = lim

x→+∞
f(x) = f(1)

Show that f(x) is a constant function on (0,∞).

Solution: For integer k ≥ 1, f(x(2
k)) = f((x(2

k−1))2) = f(x(2
k−1)), so by

induction, f(x(2
k)) = f(x) for all integer k ≥ 0. Given ε > 0, there is

some δ ∈ (0, 1) and some N ∈ (1,∞) so that if 0 < t < δ or t > N , then
|f(t) − f(1)| < ε. If 0 < x < 1, then there is some integer k such that
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k > log2(ln(δ)/ ln(x)), which is equivalent to 0 < x(2
k) < δ, and if x > 1, then

there is some integer k such that k > log2(ln(N)/ ln(x)), which is equivalent

to N < x(2
k), so in either case, |f(x)− f(1)| = |f(x(2

k))− f(1)| < ε. Since ε
was arbitrary, f(x) = f(1).

Comment: You may try using more informal limit arguments, but at the
risk of taking some unjustified steps.

(3) Let V be a corner of a right-angled box and let x, y, z be the angles formed
by the long diagonal and the face diagonals starting at V . For

A =

 sinx sin y sin z
sin z sinx sin y
sin y sin z sinx


show that |det(A)| ≤ 1.

Solution: From sin = opp
hyp , sinx = a/d, sin y = b/d, and sin z = c/d, where

a, b, c are the side lengths of the box and d is the long diagonal length.

det(A) =
1

d3
det

 a b c
c a b
b c a


The absolute value of

det

 a b c
c a b
b c a


is the volume of a parallelepiped with side lengths all equal to d. By the

scalar triple product formula, such a volume is maximized when the paral-
lelepiped has all right angles, so it is a cube with volume d3. The claimed
inequality follows.

Comment: Is there some less geometric approach, maybe an obscure in-
equality comparing det = a3 + b3 + c3 − 3abc to d3 = (a2 + b2 + c2)3/2? The
authors would be interested to know.

(4) Let f(t) be a real valued integrable function on [0, 1], so that both sides of
the following equation are continuous functions of x:

2x− 1 =

∫ x

0
f(t)dt.

Prove that if f(t) ≤ 1 for 0 ≤ t ≤ 1, then there exists a unique solution
x ∈ [0, 1] of the equation.
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Solution: Let F (x) be the function 2x−1−
∫ x
0 f(t)dt, which is continuous on

[0, 1] and satisfies F (0) = −1 and F (1) = 1−
∫ 1
0 f(t)dt ≥ 1−

∫ 1
0 1dt = 0. By

the Intermediate Value Theorem, F (x) = 0 has at least one solution x ∈ [0, 1].
This solution is unique because F is increasing on [0, 1]: for 0 ≤ a < b ≤ 1,

F (b)− F (a) = 2(b− a)−
∫ b

a
f(t)dt ≥ 2(b− a)− 1(b− a) = b− a > 0

Comment: If f(t) were continuous, then F could be proved increasing using
the Fundamental Theorem of Calculus: F ′(x) = 2 − f(x) ≥ 1. However, the
problem specifically omits this hypothesis.

(5) Let ABCD be a rectangle. The bisector of the angle ACB intersects AB
at point M and divides the rectangle ABCD into two regions: the triangle
MBC with area s and the convex quadrilateral MADC with area t.
• Determine the dimensions of the rectangle ABCD in terms of s and t.
• If t = 4s, what is the ratio AB/BC?

Solution: Let AB = b, BC = h, AM = y, MB = x, and let θ be half the
angle ABC, and let α be the angle BMC. By the Law of Sines,

sin θ

y
=

sin(π − α)

AC
,

sinα

h
=

sin θ

x
=⇒ sinα

sin θ
=
h

x
=
AC

y
=

√
b2 + h2

y

We have the following system of polynomial equations.

x+ y = b
1

2
xh = s

bh = s+ t

x2(b2 + h2) = h2y2

Eliminating y first gives:

x2(b2 + h2) = h2(b− x)2 =⇒ x2b = h2b− 2h2x

Multiplying both sides by h3 gives:

x2bh3 = h4(hb− 2hx)

(2s)2(s+ t) = h4(s+ t− 2(2s))

h =

(
4s2(s+ t)

t− 3s

)1/4

b =
s+ t

h
=

(s+ t)3/4(t− 3s)1/4√
2s

The b/h ratio can be computed directly for t = 4s, or as:

b

h
=
bh

h2
=

s+ 4s(
4s2(s+4s)
4s−3s

)1/2 =
5s√
20s2

=

√
5

2

Comment: The equality of ratios h
x = AC

y from the first step is also known

as the “bisector theorem” for triangles.
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(6) In a badly overcrowded pre-school, every child is either left-handed or right-
handed, either blue-eyed or brown-eyed, and either a boy or a girl. Exactly
half of the children are girls, exactly half of the children are left-handed and
exactly one fourth of the children are both. There are twenty-six children
who are brown-eyed. Nine of those twenty-six are right-handed boys. Two
children are right-handed boys with blue eyes. Thirteen children are both
left-handed and brown-eyed. Five of these thirteen are girls.
• How many students does the pre-school have?
• How many girls are right-handed and blue-eyed?

Solution: There are 8 types of students with the following populations:

# RH BL boy = 2

# RH BR boy = 9

# LH BR girl = 5

# LH BR boy = 13− 5 = 8

# RH BR girl = 26− 9− 13 = 4

# LH BL girl = x

# RH BL girl = y

# LH BL boy = z

From equal numbers of boys and girls, x + y + 9 = 19 + z. From equal
numbers of LH and RH, x + z + 13 = y + 15. From one fourth LH girls,
4(x+ 5) = x+ y + z + 28. This is a system of three linear equations in three
unknowns. Standard solution methods give the unique answer x = 6, y = 7,
and z = 3, so the total population is x+ y+ z+ 28 = 44, with 7 RH BL girls.

Comment: Drawing a Venn diagram may be helpful.

(7) Let n > 1 be an integer. Let (G, ·) be a group, with an identity element e
and an element a ∈ G with a 6= e and an = e. Let (H, ∗) be a group, let
f : G→ H be an arbitrary function, and then define F : G→ H by:

F (x) = f(x) ∗ f(a · x) ∗ f(a2 · x) ∗ . . . ∗ f(an−1 · x)

• Show that if f(G) is a subset of some Abelian subgroup of H, then F is
not a one-to-one function.
• Let (H, ∗) be the symmetric group (S3, ◦) (the six-element group of per-

mutations of three objects). Give an example of (G, ·), n, and a as above,
and a function f : G→ H, so that the expression F is a one-to-one func-
tion.

Solution: For the first part,

F (e) = f(e) ∗ f(a · e) ∗ f(a2 · e) ∗ . . . ∗ f(an−1 · e)
= f(e) ∗ f(a) ∗ f(a2) ∗ . . . ∗ f(an−1)
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F (a) = f(a) ∗ f(a2) ∗ f(a2 · a) ∗ . . . ∗ f(an−2 · a) ∗ f(an−1 · a)

= f(a) ∗ f(a2) ∗ f(a3) ∗ . . . ∗ f(an−1) ∗ f(e) = F (e)

using the property that f(e) commutes with other f(g) at the last step.
By the assumption that a 6= e, F is not one-to-one.

For the second part, there are lots of examples. (A correct answer must
have explicit examples of G, n, a, and f .) A simple one is to let G be a two
element group {e, a}, so n = 2, and to define f : G → S3 by f(e) = (12)
and f(a) = (23), or any other pair of non-commuting elements in S3. Then
F (e) = f(e)∗f(a) = (12)◦(23) = (123) and F (a) = f(a)∗f(e) = (23)◦(12) =
(132), so F is one-to-one.

(8) Determine whether the following sum of real cube roots is rational or irra-
tional:

3

√
6 +

√
847

27
+

3

√
6−

√
847

27

Solution: Let x be the number; then a short calculation with convenient can-
cellations shows x satisfies x3 = 12 + 5x. The only real root of x3− 5x− 12 =
(x− 3)(x2 + 3x+ 4) is x = 3.

Comment: This is similar to problem #3 from the 1969 ICMC.


