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(1) Define a sequence (sn) recursively as follows: Let s1 = 1 and for n ≥ 1, let
sn+1 =

√
1 + sn. Prove that (sn) converges, and then find the limit.

Solution: We show that the sequence is monotone increasing and bounded
above. It then follows from the Monotone Convergence Theorem that the
sequence converges. We show that for every n ∈ N, we have sn < 2 and
sn+1 ≥ sn. This is done by induction.

For n = 1, we have s1 = 1 < 2 and s2 =
√

2 ≥ 1 = s1.
Assume that for some n ∈ N, we have sn < 2 and sn+1 ≥ sn. Then

sn+1 =
√

1 + sn <
√

1 + 2 < 2. Also, sn+2 =
√

1 + sn+1 ≥
√

1 + sn = sn+1.
By the principle of Mathematical Induction, we obtain that every n ∈ N,

we have sn < 2 and sn+1 ≥ sn. Because the sequence is bounded above and
monotone increasing, it converges.

Let s = lim
n→∞

sn. We observe that s = lim
n→∞

sn = lim
n→∞

sn+1 = lim
n→∞

√
1 + sn =

√
1 + s. Solving the equation s =

√
1 + s for s yields s =

1 +
√
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(2) Let C be a non-empty collection (possibly infinite) of compact subsets of R.

(a) Prove that K =
⋂
C∈C

C is a compact set.

(b) Give an example that illustrates that the union of a family of compact
sets need not be compact.

Solution:
(a) We let C0 ∈ C be an arbitrary element of the collection. Because C0 is

compact, it is closed and bounded, by the Heine-Borel Theorem. Also,

K =
⋂
C∈C

C ⊆ C0, so K is bounded. Each member C of the family C

is compact and therefore closed. Therefore, the intersection K =
⋂
C∈C

is

closed.
Because K is closed and bounded, it is compact by the Heine-Borel The-
orem. �

(b) Let Cn = [−n, n] for all n ∈ N. Each set Cn is closed and bounded, and

is therefore compact. Let C = {Cn : n ∈ N}. Then
⋃
C∈C

C = R, which is

not compact (it is not bounded). �

(3) Assume A and B are two sets with m and n elements, respectively.
(a) How many one-to-one functions are there from A and B?
(b) How many one-to-one and onto functions are there from A to B?

Solution:
(a) We distinguish two cases.
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(i) If m > n, there are no one-to-one functions from A to B by the
pigeonhole property.

(ii) If m ≤ n, then the principle of multiplication shows there are
nPm or P (n,m) = n!

(n−m)! = n · (n − 1) · · · (n − m + 1) one-to-

one functions from A to B. Equivalently, if one enumerates the
elements in A as (ai)

m
i=1 and the elements of B as (bj)

n
j=1, there are

clearly n available images for domain element a1; without loss of
generality, say this element is b1. If one is to maintain the one-to-
one property, there are now n− 1 available images for a2; without
loss of generality, say the image is b2. This pattern continues,
yielding n − 2 possible images for a3, n − 3 images for a4, and so
on. This also yields the answer n · (n− 1) · · · (n−m + 1).

(b) If m is not equal to n there is no one-to-one and onto function from A
to B. If m is equal to n then by the principle of multiplication there are
n! one-to-one and onto functions from A to B. �

(4) Let p and q be distinct prime numbers. Find the number of generators of the
group Zpq.

Solution: An element a ∈ Zpq is a generator of Zpq if and only if a and pq
are relatively prime. Because p and q are primes, the elements of Zpq that are
not relatively prime to pq are the multiples of p and the multiples of q. The
multiples of p are p, 2p, . . . , (q − 1)p (i.e., q − 1 multiples). Using a similar
argument, we see that there are p−1 multiples of q. Also, 0 is not a generator.
Therefore, there are (q− 1) + (p− 1) + 1 = p+ q− 1 elements of Zpq that are
not generators, leaving pq − p− q + 1 elements that are generators. �

(5) Let G be a group and H a subgroup of G with index (G : H) = 2. Prove that
H is a normal subgroup of G.

Solution:
Because the index of H in G is 2, there are exactly two left cosets of H in G,
and there are exactly two right cosets. The left cosets are H itself, and a coset
of the form aH, for some a ∈ G. Likewise, the right cosets are H and a set
of the form Hb for some b ∈ G. Observe that H ∩ aH = ∅ and H ∪ aH = G;
likewise H ∩Hb = ∅ and H ∪Hb = G. It follows that aH = Hb, which means
that the left and the right cosets of H coincide, making H a normal subgroup
of G. �

(6) The Fibonacci numbers are defied as

f1 = f2 = 1

and
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fn+1 = fn + fn−1

for n ≥ 3.
(a) List f1, f2, . . . , f7.
(b) Illustrate, using the list from (a), that f2n+1 = f2

n+1 + f2
n for n = 1, 2, 3.

(c) Prove that f2n+1 = f2
n+1 + f2

n for all n ∈ N.

Solution:

(a)
n 1 2 3 4 5 6 7
fn 1 1 2 3 5 8 13

(b) For n = 1, we observe f2(1)+1 = f3 = 2 and f2
1+1 + f2

1 = (1)2 + (1)2 = 2.

For n = 2, we observe f2(2)+1 = f5 = 5 and f2
2+1 + f2

2 = (2)2 + (1)2 = 5.

For n = 3, we observe f2(3)+1 = f7 = 13 and f2
3+1+f2

3 = (3)2+(2)2 = 13.
(c) For n = 1 and n = 2, the formula has been verified in part (b). Therefore,

the basis steps hold for mathematical induction. Now assume, for the
strong form of mathematical induction, the identity holds for all values
of n up to n = k − 1. Then

f2k−3 = f2
k−1 + f2

k−2
and

f2k−1 = f2
k + f2

k−1
Now we need to verify that the identity holds for n = k. In order to do
this, we calculate f2k+1.

f2k+1 = f2k + f2k−1
= f2k−1 + f2k−2 + f2k−1
= 2f2k−1 + (f2k−1 − f2k−3)
= 3f2k−1 − f2k−3

Substituting the induction hypothesis, we can write the last expression
as

f2k+1 = 3
(
f2
k + f2

k−1
)
− f2

k−1 − f2
k−2

= 3f2
k + 2f2

k−1 − (fk − fk−1)
2

= 2f2
k + f2

k−1 + 2fkfk−1
= 2f2

k + (fk+1 − fk)2 + 2fk (fk+1 − fk)
= 2f2

k + (fk+1 − fk) (fk+1 − fk + 2fk)
= 2f2

k + (fk+1 − fk) (fk+1 + fk)
= f2

k+1 + f2
k

This completes the induction step. �

(7) Let a, b,m,M be real numbers with 0 < m ≤ a ≤ b ≤M , prove that

2
√
mM

m + M
≤ 2
√
ab

a + b

Solution: Since all numbers are positive, it is sufficient to prove

4mM

(m + M)2
≤ 4ab

(a + b)2

This is equivalent to proving
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4 m
M(

1 + m
M

)2 ≤ 4a
b(

1 + a
b

)2
Consider the function f(x) =

4x

(1 + x)2
. This function is increasing on [0, 1].

To see this we note that
d

dx

(
4x

(1 + x)2

)
= 4

1− x

(x + 1)3
≥ 0 on [0, 1].

From 0 < m ≤ a, and M > 0 we obtain 0 <
m

M
≤ a

M
. Because b ≤M , we

also have
a

M
≤ a

b
. Finally, a ≤ b, so

a

b
≤ 1. Therefore, 0 <

m

M
≤ a

b
≤ 1.

Hence we have

f
(m
M

)
=

4 m
M(

1 + m
M

)2 ≤ f
(a
b

)
=

4a
b(

1 + a
b

)2
�

(8) A soccer ball is stitched together using white hexagons and black pentagons.
Each pentagon borders five hexagons. Each hexagon borders three other
hexagons and three pentagons. Each vertex is of valence 3 (meaning that at
each corner of a hexagon or pentagon, exactly three hexagons or pentagons
meet). How many hexagons and how many pentagons are needed to make a
soccer ball? Hint: Euler’s Polyhedron Formula states that V − E + F = 2,
where V is the number of vertices, E is the number of edges (i.e., the line
adjoining two vertices) and F is the number of faces (hexagons or pentagons).

Solution: We let F5 denote the number of pentagons, F6 denote the number
of hexagons. We consider the soccer ball to be a polyhedron, with F = F5+F6

faces, E edges and V vertices. By Euler’s Formula V − E + F = 2.
Each vertex is of valence 3. We may think of placing an observer on each

vertex, and let the observers report the number of faces they see. Each ob-
server reports seeing 3 faces. Each face is observed by as many observers as
there are corners on the face, so we obtain 3V = 5F5 + 6F6.

Now place an observer in every hexagon and let them report the number of
pentagons that border their hexagon. There are F6 observers, each reporting
3 pentagons, for a total of 3F6 reports. Each pentagon is bordered by 5
hexagons, so each pentagon be reported by 5 different observers, so 3F6 = 5F5.

Now place an observer into each of the faces and let them report the number
of edges they see. Each edge will be observed by two observers, so 2E =
5F5 + 6F6.

Beginning with the equation V − E + F = 2 (and multiplying by 6) we
obtain 6V −6E+6F = 12. Substituting 3V = 5F5 +6F6 and 2E = 5F5 +6F6

and F = F5 + F6 we obtain 2(5F5 + 6F6)− 3(5F5 + 6F6) + 6(F5 + F6) = 12,
or F5 = 12.

From the equation 3F6 = 5F5 we get F6 = 20. Therefore, the soccer ball
has 12 black pentagons and 20 white hexagons. �


