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(1) Show that n2 divides (n+ 1)n − 1 for any positive integer n.

Solution:

Obviously, the statement is true for n = 1. So we assume that n ≥ 2. By the
Binomial Theorem we note that

(n+ 1)n − 1 =
n∑

j=0

(
n

j

)
nj − 1

=
n∑

j=1

(
n

j

)
nj

=
(
n

1

)
n+

n∑
j=2

(
n

j

)
nj = n2 +

n∑
j=2

(
n

j

)
nj

On noting that (
n

j

)

is a positive integer, we see that
n∑

j=2

(
n

j

)
nj

is divisible by n2. Therefore, indeed (n+ 1)n − 1 is divisible by n2. �

(2) How many zeros are at the end of 213 !?

Solution:

First we observe that the number of zeros at the end of 213 ! is same as the
number of times the number 10 occurs as a factor of 213 !. Since 10 = 2 × 5,
and since there are more factors of 2 than 5 in the digit 213 ! we observe that
there are as many zeros in the product 213 ! as there are 5 ’s in the product
213 !. In other words there are as many zeros at the end of 213 ! as there are
5 ’s in 213 !. So we proceed to count the number of times 5 occurs as a factor
in the product 213 !. The number of positive multiples of 5 less or equal to
213 is

(*)
[

213
5

]
= 42
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where [x] denotes the greatest integer less than or equal to x. Among these
multiples we list those that contain two or more factors of 5 as follows.

25 = 52, 50 = 2 · 52, 75 = 3 · 52, 100 = 4 · 52,

125 = 53, 150 = 6 · 52, 175 = 7 · 52, 200 = 8 · 52

Therefore there are 9 additional occurrences of the digit 5 that have not
been counted in (*). Therefore there are a total of 42 + 9 = 51 occurrences of
the digit in the product 213 !. Hence there are 51 zeros at the end of 213 !. �

(3) Let p(x) = anx
n + · · ·+a2x

2 +a1x+a0 be a polynomial of degree n ≥ 2, with
integer coefficients, such that a0, a1, an and a2+· · ·+an are odd integers. Show
that p(x) has no rational root. Give example to show that the conclusion may
not be true if any of a0, a1, an or a2 + · · · + an is even.

Solution:

Suppose r/s is a rational root so that r and s are integers with s �= 0. Clearly
r �= 0. We suppose that gcd (r, s) = 1. We immediately see that both r
and s can’t be even. We proceed to show that all other parities lead to a
contradiction. By assumption we have

0 = p
(r
s

)
= an

(r
s

)n
+ · · · + a2

(r
s

)2
+ a1

(r
s

)
+ a0

Clearing fractions we see that

(0.1) anr
n + an−1sr

n−1 + · · · + a2s
n−2r2 + a1s

n−1r + a0s
n = 0

Suppose now r is even and s is odd. This would imply that

anr
n + an−1sr

n−1 + · · · + a2s
n−2r2 + a1s

n−1r

is even. Therefore we conclude from (0.1) that a0s
n is even as well. But this

is not possible, since a0s
n is odd as a0, and s (hence sn) are both odd.

Recalling that an is odd, a similar argument shows that r odd and s even is
not possible either.
We now show that s and r can’t be both odd. To this end, we add the odd
integer an + · · · + a2 to both sides of (0.1) and get

(0.2) an(1+rn)+an−1(1+srn−1)+· · ·+a2(1+sn−2r2)+a1s
n−1r+a0s

n = an+· · ·+a2

Suppose now both s and r are odd. Then 1 + sirj is an even integer for any
non-negative integers i, j. Therefore an(1+rn)+an−1(1+srn−1)+ · · ·+a2(1+
sn−2r2) is even. Since a0 and a1 are both odd, we note that each of a1s

n−1r
and a0s

n is odd, and therefore their sum is even. Therefore we see that the



4

left hand side in (0.2) is even. But we recall that the right hand side is odd.
Thus, once again, we conclude that r and s can’t be both odd.
Let p(x) = a2x

2 + a1x + a0. We consider three cases: a2 = 2, a1 = a0 = −1
or a2 = a0 = −1, a1 = 2 or a2 = a1 = −1, a0 = 2. Note that in each case
p(1) = 0. This example shows that none of the conditions in the problem may
be omitted. �

(4) Let A be an n × n matrix whose diagonal entries are all equal to the same
real number α ∈ R and all other entries are equal to β ∈ R. Show that A is
diagonalizable, and compute the determinant of A.

Solution:

First let us dispose of the trivial case when β = 0. In this case A = αIn which
is obviously diagonalizable, and detA = αn. So, henceforth we suppose that
β �= 0.

Note that A =
→
w

→
v

T − γIn , where

→
w=

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ ,

→
v=

⎡
⎢⎢⎢⎣
β
β
...
β

⎤
⎥⎥⎥⎦ and γ = β − α

Now, a non-zero vector
→
x in R

n is an eigenvector of A if and only if A
→
x= λ

→
x

for some λ ∈ R. That is
→
w

→
v

T →
x −γ →

x= λ
→
x

We rewrite this as
(
→
v

T →
x)

→
w= (λ+ γ)

→
x

If c =
→
v

T →
x �= 0, then note that λ+ γ �= 0, and therefore

→
x= c(λ+ γ)−1 →

w,

showing that
→
x is a multiple of

→
w. If

→
v

T →
x= 0, then

→
x is orthogonal to

→
v and

hence to
→
w (recall that β �= 0). Thus, any eigenvector of A is either a multiple

of
→
w or orthogonal to

→
w. Therefore we see that

→
w is an eigenvector of A with

A
→
w=

→
w

→
v

T →
w −γ →

w= (nβ − γ)
→
w= ((n− 1)β + α)

→
w

That is λ = (n−1)β+α is an eigenvalue of A with corresponding eigenspace of
dimension 1. On the other hand, any other eigenvector of A must be orthogo-
nal to

→
w with corresponding eigenvalue λ = −γ = α−β. The eigenspace of A

corresponding to λ := α− β is the orthogonal complement of the eigenspace
of A corresponding to the eigenvalue λ = (n−1)β+α, namely the orthogonal
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complement of the line parallel to
→
w. Thus the eigenspace of A corresponding

to the eigenvalue λ = (n − 1)β + α has dimension n− 1. This shows that A
is diagonalizable. The determinant of A is the product of its eiegnevalues

detA = (α− β)n−1[(n− 1)β + α)]

�

(5) Let G be a group of order 26. If G has a normal subgroup of order 2, show
that G is a cyclic group.

Solution:

Let N = {e, a} be a normal subgroup of G of order 2, where e is the identity
of the group. It follows that a has order 2. Since N is ia a normal subgroup of
G, by definition, we see that g−1ag ∈ G for any g ∈ G. Since a �= e we must
have g−1ag = a. That is ag = ga. Hence we have shown that ag = ga for all
g ∈ G. Since ag = ga, one can easily show by the principle of mathematical
induction that (ag)n = angn for any g ∈ G, and any non-negative integer n.
The quotient group G/N is of order 13, and since any group of prime order
is cyclic, this quotient group is cyclic. Let b ∈ G \ N . Then the coset bN
has order 13. In particular the order of b can’t be 2. Since its order has to
divide 26, the order of b must be either 13 or 26. If the order is 26, then G is
cyclic with generator b. If the order is 13, then, since ab = ba we must have
(ab)13 = a13b13 = a, and therefore (ab)26 = a2 = e, and hence ab has order
26. Therefore ab generates G, and therefore G is cyclic. �

(6) Show that for any positive integer k, the following is an irrational number.
∞∑

n=0

1
(n !)k

Solution:

Suppose contrary to what is asserted, the indicated sum is a rational number.
Then there are positive integers a and b such that

∞∑
n=0

1
(n !)k

=
a

b
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We multiply both sides by ((b+ 1) !)k and rewrite the sum as follows.

((b+ 1) !)k
a

b
=

∞∑
n=0

((b+ 1) !)k

(n !)k

=
b+1∑
n=0

((b+ 1) !)k

(n !)k
+

∞∑
n=b+2

((b+ 1) !)k

(n !)k

Thus

(0.3)
∞∑

n=b+2

((b+ 1) !)k

(n !)k
= ((b+ 1) !)k

a

b
−

b+1∑
n=0

((b+ 1) !)k

(n !)k

It is clear that the right hand side is a positive integer. We now proceed to
show that the left hand side is not an integer, thereby getting the desired
contradiction. For n ≥ b+ 2, we write n = (b+ 2) + j for j ≥ 0 and hence

((b+ 1) !)k

(n !)k
=

(
(b+ 1) !

((b+ 2) + j) !

)k

=
(

1
(b+ 2 + j) · · · (b+ 2)

)k

≤
(

1
(b+ 2)j+1

)k

As a consequence we see that

∞∑
n=b+2

((b+ 1) !)k

(n !)k
=

∞∑
j=0

((b+ 1) !)k

((b+ 2) + j) !)k

≤
∞∑

j=0

(
1

(b+ 2)k

)j+1

=
1

(b+ 2)k − 1

Note that
1

(b+ 2)k − 1
< 1

showing that the left-hand side sum in (0.3) can’t be an integer. �

(7) Let f : [0, 1] → R be a continuous function. Show that

lim
n→∞

∫ 1

0
nx(1 − x2)nf(x) dx =

1
2
f(0)

Solution:

Note that
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(0.4)
∫ 1

0
nx(1 − x2)n dx = − n

2(n + 1)
(1 − x2)n+1

∣∣∣∣
1

0

=
n

2(n + 1)

As a result of this, the claim will follow once we show that

lim
n→∞

∫ 1

0
nx(1 − x2)n[f(x) − f(0)] dx = 0

To this end, let ε > 0 be given. Since f is continuous at x = 0, there is
1 > δε > 0 such that

|f(x) − f(0)| < ε, whenever 0 ≤ x < δε

First let us note that

∫ 1

0
nx(1 − x2)n|f(x) − f(0)| dx =

∫ δ

0
nx(1 − x2)n|f(x) − f(0)| dx

+
∫ 1

δ
nx(1 − x2)n|f(x) − f(0)| dx

= In + IIn(0.5)

We estimate each of the summands In and IIn. For In, we use the continuity
of f at 0. Thus

In =
∫ δ

0
nx(1 − x2)n|f(x) − f(0)| dx ≤ ε

∫ 1

0
nx(1 − x2)n dx

=
εn

2(n+ 1)
< ε

Next we estimate IIn. For this, we use the boundedness of f on [0, 1]. Suppose
|f(x)| ≤ M for some M > 0 and all 0 ≤ x ≤ 1. Let us notice that for
sufficiently large n, the function g(x) = n(1 − x2)n satisfies

0 ≤ g(x) ≤ n(1 − δ2)n whenever0 ≤ δ ≤ 1

In fact this is true provided that n ≥ (δ−2 − 1)/2. Therefore, for such large
n, we estimate

IIn =
∫ 1

δ
nx(1 − x2)n|f(x) − f(0)| dx

≤ 2M
∫ 1

δ
nx(1 − x2)n dx

≤ 2Mn(1 − δ2)n

Therefore, from (0.5) and the above estimates we find that for sufficiently
large n∫ 1

0
nx(1 − x2)|f(x) − f(0)| dx = In + IIn ≤ ε+ 2Mn(1 − δ2)n

On noting that
lim

n→∞n(1 − δ2)n = 0
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we find that

0 ≤ lim sup
n→∞

∫ 1

0
nx(1 − x2)|f(x) − f(0)| dx ≤ ε

Since ε > 0 is arbitrary, we conclude that

lim sup
n→∞

∫ 1

0
nx(1 − x2)|f(x) − f(0)| dx = 0

Therefore, we have

(0.6) lim
n→∞

∫ 1

0
nx(1 − x2)|f(x) − f(0)| dx = 0

as claimed. Finally, using (0.4) and (0.6) we find that

lim
n→∞

∫ 1

0
nx(1 − x2)nf(x) = lim

n→∞

∫ 1

0
nx(1 − x2)n[f(x) − f(0)] dx

+ lim
n→∞ f(1)

∫ 1

0
nx(1 − x2)n dx

=
1
2
f(0)

�
Remark: On the test papers at the 2012 ICMC, the problem was stated incorrectly as

. . . lim
n→∞

∫ 1

0
nx(1 − x2)nf(x) dx =

1
2
f(1).

(8) Recall that a function f(x, y) is said to be harmonic in an open subset O of the
plane if it is twice continuously differentiable in O and fxx(x, y)+fyy(x, y) = 0
for all (x, y) in O. Let R be the region in the plane given by

R = {(x, y) ∈ R
2 : x2 + (y + 1)2 ≤ 9 and x2 + (y − 1)2 ≥ 1}

Show that if f is harmonic in an open disk containing R, then∫ ∫
R
f(x, y) dxdy = 9πf(0,−1) − πf(0, 1)

Solution:

First we rewrite the given double integral as

(0.7)
∫∫

R
f(x, y) dx dy =

∫∫
D1

f(x, y) dx dy −
∫∫

D2

f(x, y) dx dy
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where D1 and D2 are the closed disks

D1 = {(x, y) : x2 + (y + 1) ≤ 9} and D2 = {(x, y) : x2 + (y − 1)2 ≤ 1}
The following property of a function f(x, y) that is harmonic in an open

set containing a disk D centered at (x0, y0) can be interpreted as a “Mean
Value Property”:

(0.8)
1

area (D)

∫∫
D
f(x, y) dx dy = f(x0, y0).

We now apply formula (0.8) to (0.7) to get

∫∫
R
f(x, y) dx dy =

∫∫
D1

f(x, y) dx dy −
∫∫

D2

f(x, y) dx dy

= area(D1)f(0,−1) − area(D2)f(0, 1)

= 9πf(0,−1) − πf(0, 1).

To prove the Mean Value Property (0.8), let r be the radius of D, and
consider any disk E of radius 0 < ρ ≤ r centered at (x0, y0). We give the
curve ∂E a counterclockwise orientation, and apply Green’s Theorem to find

0 =
∫∫

E
[fxx(x, y) + fyy(x, y)] dx dy =

∫∫
E
[(fx)x(x, y) − (−fy)y(x, y)] dx dy

=
∫

∂E
[−fy(x, y) dx + fx(x, y) dy]

=
∫ 2π

0
(ρfy(x0 + ρ cos θ, y0 + ρ sin θ) sin θ + ρfx(x0 + ρ cos θ, y0 + ρ sin θ) cos θ) dθ

In the last integral we used the following parametrization for the counter-
clockwise oriented circle ∂E .

x = x0 + ρ cos θ, y = y0 + ρ sin θ, 0 ≤ θ ≤ 2π

On dividing both sides of the last equation by ρ, we see that for any 0 < ρ ≤ r

(0.9)
∫ 2π

0
(fy(x0 +ρ cos θ, y0 +ρ sin θ) sin θ+fx(x0 +ρ cos θ, y0 +ρ sin θ) cos θ) dθ = 0

As a consequence of the relation (0.9), we will show that the following function
is a constant.

(0.10) ψ(ρ) :=
1
2π

∫ 2π

0
f(x0 + ρ cos θ, y0 + ρ sin θ) dθ, 0 < ρ ≤ r

In fact, on differentiating ψ, we see that for 0 < ρ < r

ψ′(ρ) =
1
2π

∫ 2π

0
[fx(x0 + cos θ, y0 + ρ sin θ) cos θ + fy(x0 + ρ cos θ, y0 + ρ sin θ) sin θ] dθ
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Therefore, by (0.9) we see that ψ′(ρ) = 0 for all 0 < ρ < r. Thus, ψ is a
constant on [0, r], and

ψ(ρ) = ψ(0) = f(x0, y0) for 0 < ρ ≤ r

In other words, for 0 < ρ ≤ r, we have

1
2π

∫ 2π

0
f(x0 + ρ cos θ, y0 + ρ sin θ) dθ = f(x0, y0)

We multiply both sides by 0 < ρ ≤ r, and integrate the resulting equation on
[0, r] to get

1
2π

∫ r

0

∫ 2π

0
ρf(x0 + ρ cos θ, y0 + ρ sin θ) dθ dρ = f(x0, t0)

∫ r

0
ρ dρ

Therefore, we obtain

f(x0, y0) =
1
πr2

∫ 2π

0

∫ r

0
ρf(x0+ρ cos θ, y0+ρ sin θ) dρ dθ =

1
area(D)

∫∫
D
f(x, y) dx dy

This proves the claim (0.8). �
Remark: On the test papers at the 2012 ICMC, the last sentence of the problem was

stated as . . . Show that if f is harmonic in an open set containing R, . . . which

is an insufficient hypothesis. In particular, such an open set might not be large enough to

include (0, 1) in the domain of f .


