
1. It is not possible to achieve any order of elimination by carefully choosing an elimination
parameter if n is even. Consider the following order of elimination: 1, n, n− 1, n− 2, . . . , 3.
If the first person to be eliminated is person 1, then the parameter must be of the form nk,
for some integer k; therefore the elimination parameter must be even. If the the last person
to be eliminated is person 3 (with person 2 surviving), the parameter must be odd. The
elimination parameter can’t be both even and odd.

2. If x represents the length of the cut, let P (x), A(x) and V (x) represent the perimeter
of the base, the area of the base, and the volume of the resulting box as a function of x.
Observe that:
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The result is implied by maximizing V (x) using the tools of calculus.

3. The function

f(x, y) =
xn+1y

x2(n+1) + y2

is a function for which

lim
x→0

f(x, gP (x)) = 0

Let y = xn+1; then

lim
x→0

f(x, y) 6= 0

4. If n and b are relatively prime, then there is a minimal non zero r for which br ≡ 1
mod n, or br − 1 = kn, for some k. It follows that

k = dr−1b
r−1 + · · ·+ d1b+ d0 for 0 ≤ di < b

Putting the last two ideas together, we obtain:
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Since 1
1−b−r =

∑∞
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−r)i, a cycle length for 1
n

is r. To show that there is no lower cycle
length, note that the equation (which would follow if m were another cycle length)
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implies that m ≥ r because of the minimality of r.

5. Imagine that the three pegs are occupied, from left to right, by the red stack and then
the blue stack, and the rightmost peg is unoccupied. Label these three pegs PL, PM , and PR

(for left peg, middle peg, and right peg). In order to swap the positions of the two stacks,
we will create a double stack containing 2(n− 1) disks of alternating color (the pattern will
be, from the top; red, blue, red, blue, and so on) over the largest blue disk on PM . We will
then be able to move: 1. the largest red disk to PR; 2. the double stack over the largest red
disk on PR; 3. the largest blue disk onto PL; 4. the double stack onto the largest blue disk
on PL; 5. the largest red disk onto PM . Finally, we unstack the double stack. Let DM(k)
denote the number of moves required to create a double stack on PM . Let A(k) denote the
number of moves required to implement the entire algorithm. Since it will require 2(2k − 1)
moves to shift the double stack from one peg to another, we would have the following:

A(n) = 2DM(n− 1) + 3 + 4(2n−1 − 1)

Suppose that one has two stacks of k red and blue disks. Let DR(k) denote the number of
moves required to shuffle these two stacks into a single double stack which sits atop PR. In
order to create a double stack of 2k disks over the PM , one is required to create a double
stack of 2(k − 1) disks over PR. Once this has been done, the second largest red disk would
be moved atop the second largest blue disk on PM , and then the double stack of 2(k − 1)
disks would be moved from PR onto PM . We would then have:

DM(k) = DR(k − 1) + 2(2k−2 − 1) + 1

On the other hand, in order to create a double stack of 2k disks on PR, we are required to
create a double stack of 2(k − 1) disks on PM , move a red disk from PL peg onto PR, move
the double stack of 2(k − 1) disks onto the leftmost peg, move a blue disk from the center
peg onto the rightmost peg, the move the double stack onto the rightmost peg. So:

DR(k) = DM(k − 1) + 2 + 4(2k−1 − 1)

Putting these two together, we would have the relation:

DM(k)−DM(k − 2) = 3 + 2(2k−1 − 1) + 4(2k−2 − 1)

Since DM(0) = 0 and DM(1) = 1, this relation permits an efficient calculation of DM(k) for
any k by examining the telescoping sum (for i = 2 or i = 3):

(DM(k)−DM(k−2))+(DM(k−2)−DM(k−4))+· · ·+(DM(i)−DM(i−2)) = DM(k)−DM(i−2)

6. Assume that xn 6= f(xn−1). Otherwise, a fixed point clearly exists and the limit converges
to this fixed point. In particular, x1 6= f(x1). The mean value theorem implies that

2



|xn − xm| <
|x1 − f(x1)|

2m−3

So, for any ε > 0, choose N so that |x1−f(x1)|
2N−3 < ε . If n ≥ m ≥ N , it follows that

|xn − xm| <
1

2m−3 |x1 − f(x1)|

This implies that the sequence is Cauchy, therefore convergent. Since the limit exists, it
must be that

f( lim
n→∞

xn) = lim
n→∞

f(xn) = lim
n→∞

xn

7. The following function f : R→ R− {0} is a one to one correspondence:

f(x) =

{
x if x is not a whole number
x+ 1 if x is a whole number

8. The matrix in question can be thought of as a polynomial in the variable X with complex
coefficients, where X is the matrix:

0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0


To be more precise, if A is the matrix described in the problem, then

A = I + nX + (n− 1)X2 + · · ·+ 2Xn−1

It can be shown that if v is an eigenvector for X, then v is an eigenvector for A, and that
the list of eigenvectors for X is a complete list of eigenvectors for A. If v is an eigenvector
for X, then it has the form 

1
ωi

ω2
i

·
·
·

ωn−1
i


where ωi is an nth root of unity.
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