1. It is not possible to achieve any order of elimination by carefully choosing an elimination parameter if $n$ is even. Consider the following order of elimination: $1, n, n-1, n-2, \ldots, 3$. If the first person to be eliminated is person 1 , then the parameter must be of the form $n k$, for some integer $k$; therefore the elimination parameter must be even. If the the last person to be eliminated is person 3 (with person 2 surviving), the parameter must be odd. The elimination parameter can't be both even and odd.
2. If $x$ represents the length of the cut, let $P(x), A(x)$ and $V(x)$ represent the perimeter of the base, the area of the base, and the volume of the resulting box as a function of $x$. Observe that:

$$
\begin{gathered}
A(x)=\frac{\sqrt{3}}{4}(1-2 \sqrt{3} x)^{2} \\
P(x)=3(1-2 \sqrt{3} x) \\
V(x)=\frac{\sqrt{3}}{4} x(1-2 \sqrt{3} x)^{2}
\end{gathered}
$$

The result is implied by maximizing $V(x)$ using the tools of calculus.
3. The function

$$
f(x, y)=\frac{x^{n+1} y}{x^{2(n+1)}+y^{2}}
$$

is a function for which

$$
\lim _{x \rightarrow 0} f\left(x, g_{P}(x)\right)=0
$$

Let $y=x^{n+1}$; then

$$
\lim _{x \rightarrow 0} f(x, y) \neq 0
$$

4. If $n$ and $b$ are relatively prime, then there is a minimal non zero $r$ for which $b^{r} \equiv 1$ $\bmod n$, or $b^{r}-1=k n$, for some $k$. It follows that

$$
k=d_{r-1} b^{r-1}+\cdots+d_{1} b+d_{0} \text { for } 0 \leq d_{i}<b
$$

Putting the last two ideas together, we obtain:

$$
\frac{1}{n}=\frac{d_{r-1} b^{r-1}+\cdots+d_{1} b+d_{0}}{b^{r}} \frac{1}{1-b^{-r}}
$$

Since $\frac{1}{1-b^{-r}}=\sum_{i=0}^{\infty}\left(b^{-r}\right)^{i}$, a cycle length for $\frac{1}{n}$ is $r$. To show that there is no lower cycle length, note that the equation (which would follow if $m$ were another cycle length)

$$
\frac{1}{n}=\frac{e_{m-1} b^{m-1}+\cdots+e_{1} b+e_{0}}{b^{m}} \frac{1}{1-b^{-m}}
$$

implies that $m \geq r$ because of the minimality of $r$.
5. Imagine that the three pegs are occupied, from left to right, by the red stack and then the blue stack, and the rightmost peg is unoccupied. Label these three pegs $P_{L}, P_{M}$, and $P_{R}$ (for left peg, middle peg, and right peg). In order to swap the positions of the two stacks, we will create a double stack containing $2(n-1)$ disks of alternating color (the pattern will be, from the top; red, blue, red, blue, and so on) over the largest blue disk on $P_{M}$. We will then be able to move: 1. the largest red disk to $P_{R} ; 2$. the double stack over the largest red disk on $P_{R} ; 3$. the largest blue disk onto $P_{L} ; 4$. the double stack onto the largest blue disk on $P_{L} ; 5$. the largest red disk onto $P_{M}$. Finally, we unstack the double stack. Let $D_{M}(k)$ denote the number of moves required to create a double stack on $P_{M}$. Let $A(k)$ denote the number of moves required to implement the entire algorithm. Since it will require $2\left(2^{k}-1\right)$ moves to shift the double stack from one peg to another, we would have the following:

$$
A(n)=2 D_{M}(n-1)+3+4\left(2^{n-1}-1\right)
$$

Suppose that one has two stacks of $k$ red and blue disks. Let $D_{R}(k)$ denote the number of moves required to shuffle these two stacks into a single double stack which sits atop $P_{R}$. In order to create a double stack of $2 k$ disks over the $P_{M}$, one is required to create a double stack of $2(k-1)$ disks over $P_{R}$. Once this has been done, the second largest red disk would be moved atop the second largest blue disk on $P_{M}$, and then the double stack of $2(k-1)$ disks would be moved from $P_{R}$ onto $P_{M}$. We would then have:

$$
D_{M}(k)=D_{R}(k-1)+2\left(2^{k-2}-1\right)+1
$$

On the other hand, in order to create a double stack of $2 k$ disks on $P_{R}$, we are required to create a double stack of $2(k-1)$ disks on $P_{M}$, move a red disk from $P_{L}$ peg onto $P_{R}$, move the double stack of $2(k-1)$ disks onto the leftmost peg, move a blue disk from the center peg onto the rightmost peg, the move the double stack onto the rightmost peg. So:

$$
D_{R}(k)=D_{M}(k-1)+2+4\left(2^{k-1}-1\right)
$$

Putting these two together, we would have the relation:

$$
D_{M}(k)-D_{M}(k-2)=3+2\left(2^{k-1}-1\right)+4\left(2^{k-2}-1\right)
$$

Since $D_{M}(0)=0$ and $D_{M}(1)=1$, this relation permits an efficient calculation of $D_{M}(k)$ for any $k$ by examining the telescoping sum (for $i=2$ or $i=3$ ):

$$
\left(D_{M}(k)-D_{M}(k-2)\right)+\left(D_{M}(k-2)-D_{M}(k-4)\right)+\cdots+\left(D_{M}(i)-D_{M}(i-2)\right)=D_{M}(k)-D_{M}(i-2)
$$

6. Assume that $x_{n} \neq f\left(x_{n-1}\right)$. Otherwise, a fixed point clearly exists and the limit converges to this fixed point. In particular, $x_{1} \neq f\left(x_{1}\right)$. The mean value theorem implies that

$$
\left|x_{n}-x_{m}\right|<\frac{\left|x_{1}-f\left(x_{1}\right)\right|}{2^{m-3}}
$$

So, for any $\epsilon>0$, choose $N$ so that $\frac{\left|x_{1}-f\left(x_{1}\right)\right|}{2^{N-3}}<\epsilon$. If $n \geq m \geq N$, it follows that

$$
\left|x_{n}-x_{m}\right|<\frac{1}{2^{m-3}}\left|x_{1}-f\left(x_{1}\right)\right|
$$

This implies that the sequence is Cauchy, therefore convergent. Since the limit exists, it must be that

$$
f\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n}
$$

7. The following function $f: \mathbb{R} \rightarrow \mathbb{R}-\{0\}$ is a one to one correspondence:

$$
f(x)= \begin{cases}x & \text { if } x \text { is not a whole number } \\ x+1 & \text { if } x \text { is a whole number }\end{cases}
$$

8. The matrix in question can be thought of as a polynomial in the variable $X$ with complex coefficients, where $X$ is the matrix:

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

To be more precise, if $A$ is the matrix described in the problem, then

$$
A=I+n X+(n-1) X^{2}+\cdots+2 X^{n-1}
$$

It can be shown that if $v$ is an eigenvector for $X$, then $v$ is an eigenvector for $A$, and that the list of eigenvectors for $X$ is a complete list of eigenvectors for $A$. If $v$ is an eigenvector for $X$, then it has the form

$$
\left(\begin{array}{c}
1 \\
\omega_{i} \\
\omega_{i}^{2} \\
\cdot \\
\cdot \\
\cdot \\
\omega_{i}^{n-1}
\end{array}\right)
$$

where $\omega_{i}$ is an nth root of unity.

