
1. The solution is
(
p+q
q

)
. In order to see this, think of p + q boxes. Each box will contain a

card. The deck is divided into two parts, one containing p cards and one containing q cards.
To shuffle the two parts together is the same as selecting q of the p + q boxes then placing
the cards in order into those boxes.

2. First, recall Wilson’s Theorem:

(p− 1)! ≡ −1modp

Proof. Note that for every 0 < i ≤ k, p− i ≡ −i mod p. As a result

(p− (k + 1)!k! ≡ (−1)k(p− (k + 1))!(p− k) · · · (p− 1) mod p

The result follows from Wilson’s Theorem.

3. Player 1 should take 3, 1, or 2 chips at any stage of the game, depending upon whether
or not the number of chips left is equivalent to 0, 2, or 3 modulo 4.

Proof. If a player faces a table which contains 4k + 1 chips and must act, then this player
will ultimately lose. The reason for this is that the other player can always arrange that a
total of four chips leave the table every round. This will leave the player that faces 4k + 1
chips initially with 1 chip in the final round. The proof is induction on k. It is clear that
the choices of player 1 will guarantee this situation for player 2.

4. Recall the ”rank + nullity theorem.” The dimension of Rn is n.

rank (·) + nullity (·) = n

where · could be equal to A or B.

Proof. Let the null space of the matrices A and B be spanned by {a1, . . . , ap} and {b1, . . . , bq}
(with p+ q = n), respectively. The fact that A+B = I implies that the collection of vectors
{a1, . . . , ap, b1, . . . , bq} will form a basis for Rn. One can then write any vector as a linear
combination of the basis vectors and check that the required conditions hold.
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5. The quotient is not defined at x = 0. The proof will proceed by noting the Taylor series
expansions of the various functions and composing these appropriately.

Proof. The Taylor series for the relevant functions are

sinx = x− x3

3!
+ Terms of at least order 5

tanx = x+
x3

3
+ Terms of at least order 5

arcsinx = x+
x3

3!
+ Terms of at least order 5

arctanx = x− x3

3
+ Terms of at least order 5

After composition and some manipulation, we obtain the following limit

lim
x→0

−x3 + Terms of at least order 5

x3 + Terms of at least order 5

As a consequence, the limit is −1.

6. The thing to observe is that we are looking for ordered pairs (x, y) in the first quadrant that
satisfy the inequality 1

2
< y

x
< 3 whose sum is odd and bounded above by 5. There are only

three ordered pairs which satisfy these conditions: (1, 2), (2, 3), and (3, 2). U+D+R+L = 5,
where the letters represent the number of moves up (U), down (D), and so forth. Let the
ordered quadruple (U,D,R, L) represent the set of directions. To get to (2, 3), U = 3 and
R = 2. The associated probability is 5!

2!3!
( 1
16

)2(1
4
)3. Similarly, the probability associated to

the point (3, 2) is 5!
3!2!

( 1
16

)3(1
4
)2. Both (2, 0, 2, 1) and (3, 1, 1, 0) will reach (1, 2) The probability

associated with the first quadruple is 5!
2!2!1!

(1
4
)2( 1

16
)2( 9

16
). The probability associated to the

second quadruple is 5!
3!1!1!

(1
4
)3(1

8
)( 1

16
). The sum of these four probabilities is the solution.

7. The difficulty is in finding a way to show that as one gets close to x, the denominator gets
large in our rational number. We may as well assume that x ∈ [0, 1] and that x is irrational.

Proof. Let ε > 0. There is an n ∈ N such that 1
n
< ε. For every 1 ≤ i ≤ n, define

δi = min{|x− 0|, |x− 1

i
|, . . . , |x− i− 1

i
|, |x− 1|}

Define δ = minδi
2

If y ∈ (x − δ, x + δ) and y /∈ Q, then |f(x) − f(y)| = 0. If y ∈ Q, then y = p
q
, then q > n.

(If not, then |x− p
q
| < δ < δq ≤ |x− p

q
|) This is sufficient to prove the proposition.
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