1. Two points P and Q are randomly selected in the interval $[0,2]$. What is the probability that they are within $\frac{1}{3}$ of each other?

The area between the lines $P=Q+\frac{1}{3}$ and $P=Q-\frac{1}{3}$ that is contained in the square $[0,2] \times[0,2]$ is equal to $4-\left(\frac{5}{3}\right)^{2}=\frac{11}{9}$. Divide this number by 4 to get the required probability.
2. Show that the Maclaurin series of

$$
f(x)=\frac{x}{1-x-x^{2}}
$$

is equal to $\sum_{n=1}^{\infty} f_{n} x^{n}$, where $f_{1}=1, f_{2}=1$, and $f_{n}=f_{n-1}+f_{n-2}$.
Proof. Consider the equation

$$
\frac{x}{1-x-x^{2}}=\sum_{n=1}^{\infty} f_{n} x^{n}
$$

Multiply both sides of this equation by the $1-x-x^{2}$, and expand the right hand side of the equation. The result, after reindexing, is the equation

$$
x=f_{1} x+\left(f_{2}-f_{1}\right) x^{2}+\sum_{n=3}^{\infty}\left(f_{n}-f_{n-1}-f_{n-2}\right) x^{n}
$$

The result follows by comparing coefficients on both sides of this equation.
3. $\sigma^{3}=(12357846)$. We can calculate σ by taking the cube of σ^{3}. So $\sigma=$ (15427638)
4. Prove that

$$
\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1
$$

Proof. Let $v=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}} . \quad v \in \mathbb{R}$, and v satisfies the equation $x^{3}+3 x-4=0$. Since $x^{3}+3 x-4=(x-1)\left(x^{2}+x+4\right)$ and the discriminant of $x^{2}+x+4$ is -15 , the only real solution of $x^{3}+3 x-4=0$ is 1 . So, $v=1$.
5. Show that $n \mid(n-1)$! if $n \neq 4$ and n is a composite number.

Proof. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$. One line of argument is to produce for each i at least α_{i} factors of $(n-1)$! which are divisible by p_{i}. Division may be used to do this. Note that if $x \geq 2$ and $\alpha \geq 2$:

$$
x^{\alpha}-1=\left(x^{\alpha-1}-1\right) x+(x-1)
$$

If $p_{i}=2$ and $\alpha_{i} \geq 3$ or if $p_{i} \neq 2$ and $\alpha_{i} \geq 2, p_{i}^{\alpha_{i}-1}-1 \geq \alpha_{i}$. This implies that $(n-1)$! has at least α_{i} factors which are divisible by p_{i} in these cases. The other cases are checked individually.
6. Let $f:(a, b) \rightarrow \mathbb{R}$. Suppose that f is increasing and satisfies the property that

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Prove that f is continuous.
Proof. The condition to which f is subject implies that for $r<s<t$,

$$
\frac{f(s)-f(r)}{s-r} \leq \frac{f(t)-f(r)}{t-r} \leq \frac{f(t)-f(s)}{t-s}
$$

Now let $\epsilon>0$. Let $x_{0} \in(s, t) \subset(a, b)$. Choose $w \in \mathbb{N}$ large enough so that $\left(x_{0}-\frac{\epsilon}{w}, x_{0}+\frac{\epsilon}{w}\right) \subset(s, t)$. Let $m=\frac{f(t)-f\left(x_{0}\right)}{t-x_{0}}$. Let k be equal to the larger of w or m. Finally, let $\delta=\frac{\epsilon}{k}$. If $\left|x-x_{0}\right|<\delta$, the inequality above implies that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.
7. Let $\mathbb{Z}_{\geq a}=\{x \in \mathbb{Z} \mid x \geq a\}$. Write down a formula for a 1-1 correspondence:

$$
\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 1}
$$

Proof. Define the set T_{n} as follows.

$$
T_{n}=\left\{(p, q, r) \mid p+q+r=n ; p, q, r \in Z_{\geq 0}\right\}
$$

For each j, with $0 \leq j \leq n$, define the set $E_{n, j}$ as follows.

$$
E_{n, j}=\left\{(p, q, j) \mid p+q+j=n ; p, q, j \in \mathbb{Z}_{\geq 0}\right\}
$$

Suppose that $(p, q, r) \in\left(\mathbb{Z}_{\geq 0}\right)^{\times 3}$. Then

$$
F(p, q, r)=\sum_{i=0}^{p+q+r-1}\left|T_{i}\right|+\sum_{r+1 \leq i \leq n}\left|E_{p+q+r, i}\right|+(q+1)
$$

In this formula, if $p+q+r=0$, then $\sum_{i=0}^{p+q+r-1}\left|T_{i}\right|$ will be taken to be 0 . In addition, if $r=n$, then $\sum_{r+1 \leq i \leq n}\left|E_{p+q+r, i}\right|$ will also be taken to be 0 .

