ICMC 2008-Solutions

1. Let S be a set with a binary operation $*$ that is associative. Suppose that for all x and y in S we have $x * x * x=x$ (i.e. $x^{3}=x$) and $x * x * y=y * x * x$ (i.e. $x^{2} y=y x^{2}$). Show that for all x and y in S we have that $x * y=y * x$.
$\left.y x=(y x)^{3}=(y x)^{2}(y x)=\left((y x)^{2} y\right) x\right)=y(y x)^{2} x=y(y x)(y x) x=x y^{2} y x^{2}=x y x^{2}=x x^{2} y=x^{3} y=x y$
2. Two friends agree to meet at the library, but each has forgotten the time they were supposed to meet. Each remembers that they were supposed to meet sometime between 1:00 pm and 5:00 pm. They each independently decide to go to the library at a random time between 1:00 pm and 5:00 pm, wait for 30 minutes, and leave if the other doesn't show up. What is the probability that they meet during this 4 -hour period?
Solution: Consider the set $[0,4] \times[0,4]$. Draw in the line $y=x$, which represents both students meeting each other at the exact same time. If x arrives at time t, then y can arrive at any time between $t-0.5$ and $t+0.5$, and the students will meet. Similarly, if y arrives at time t^{\prime}, then x can arrive at any time between $t^{\prime}-0,5$ and $t^{\prime}+0.5$, and the students will meet. So, widening the line $y=x$ so that it is everywhere one hour wide and one hour tall forms a region that represents all possible "successful" meeting times. The area of the 4×4-square represents all possible selections of times by both students.

The area of the shaded region is $16-2\left(\frac{1}{2}\right)\left(\frac{7}{2}\right)^{2}=\frac{15}{4}$. So, the probability the two students meet during this 4 -hour period is $\frac{15 / 4}{16}=\frac{15}{64}$
3. Suppose that two triangles have a common angle. Show that the sum of the sines of the angles will be larger in that triangle where the difference of the remaining two angles is smaller. HINT: $2 \sin \left(\frac{\theta+\delta}{2}\right) \cos \left(\frac{\theta-\delta}{2}\right)=$ $\sin \theta+\sin \delta$.
Let the angles of the triangles be denoted by α, β, γ and $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ and let $\alpha=\alpha^{\prime}$. We ask under what conditions the following inequality holds: $\sin \alpha+\sin \beta+\sin \gamma<\sin \alpha^{\prime}+\sin \beta^{\prime}+\sin \gamma^{\prime}$, or since $\sin \alpha=$ $\sin \alpha^{\prime}, \sin \beta+\sin \gamma<\sin \beta^{\prime}+\sin \gamma^{\prime}$. By the hint, this inequality can be written as $2 \sin \left(\frac{\beta+\gamma}{2}\right) \cos \left(\frac{\beta-\gamma}{2}\right)<$ $2 \sin \left(\frac{\beta^{\prime}+\gamma^{\prime}}{2}\right) \cos \left(\frac{\beta^{\prime}-\gamma^{\prime}}{2}\right)$. Since $\alpha=\alpha^{\prime}$, we have $\beta+\gamma=\beta^{\prime}+\gamma^{\prime}<180^{\circ}$, so that $2 \sin \left(\frac{\beta+\gamma}{2}\right)=2 \sin \left(\frac{\beta^{\prime}+\gamma^{\prime}}{2}\right)>$ 0 . Dividing both sides by $2 \sin \left(\frac{\beta+\gamma}{2}\right)$ yields $\cos \left(\frac{\beta-\gamma}{2}\right)<\cos \left(\frac{\beta^{\prime}-\gamma^{\prime}}{2}\right)$ Since $\cos \theta=\cos |\theta|$ and $y=\cos \theta$ is decreasing on $0^{\circ} \leq \theta \leq 180^{\circ}$, the above inequality holds if and only if $\left|\frac{\beta^{\prime}-\gamma^{\prime}}{2}\right|<\left|\frac{\beta-\gamma}{2}\right|$, or equivalently if $\left|\beta^{\prime}-\gamma^{\prime}\right|<|\beta-\gamma|$.
4. The base of a solid object is the region bounded by the parabola $y=\frac{1}{2} x^{2}$ and the line $y=2$; cross sections of the object perpendicular to the y-axis are semicircles. What is the volume of the object?
Cross-sectional area is $\frac{1}{2} \pi\left(\sqrt{2 y_{i}}\right)^{2}=\pi y_{i}$ at level y_{i}. Volume of one puffed-up cross-section is $\pi y_{i} \Delta y_{i}$, and we sum these together to get an approximate volume of $\sum \pi y_{i} \Delta y_{i}$. This quickly leads us to the exact volume given by $\int_{0}^{2} \pi y d y=2 \pi$.
5. Define the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ by $x_{0}=0, x_{1}=1, x_{n}=\frac{x_{n-1}+(n-1) x_{n-2}}{n}$. Determine $\lim _{n \rightarrow \infty} x_{n}$. Recalling that $\ln (1+x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{k+1}}{k+1}, x \in(-1,1]$ may be helpful.
First, we notice that $x_{n}=\frac{x_{n-1}+(n-1) x_{n-2}}{n}=\frac{n x_{n-1}-(n-1) x_{n-1}+(n-1) x_{n-2}}{n}=x_{n-1}+\frac{-(n-1) x_{n-1}+(n-1) x_{n-2}}{n}$, or $x_{n}-x_{n-1}=-\frac{n-1}{n}\left(x_{n-1}-x_{n-2}\right)$. Similar arugments show $x_{n-1}-x_{n-2}=-\frac{n-2}{n-1}\left(x_{n-2}-x_{n-3}\right), x_{n-2}-x_{n-3}=$ $-\frac{n-3}{n-2}\left(x_{n-3}-x_{n-4}\right), x_{2}-x_{1}=-\frac{1}{2}\left(x_{1}-x_{0}\right)$ Substituting, we see $x_{n}-x_{n-1}=-\frac{n-1}{n} \cdot-\frac{n-2}{n-1} \cdot-\frac{n-3}{n-2} \cdots \cdots$. $-\frac{1}{2}\left(x_{1}-x_{0}\right)=\frac{(-1)^{n-1}}{n}, n \geq 2$ We also notice that the above equation is true when $n=1$.
Since $x_{0}=0$, we can write $x_{n}=x_{n}-x_{0}=\left(x_{n}-x_{n-1}\right)+\left(x_{n-1}-x_{n-2}\right)+\cdots+\left(x_{1}-x_{0}\right)=\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right)=$ $\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1}$. Hence $\lim _{n \rightarrow \infty} x_{n}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1}=\ln 2$.
6. Prove that $\frac{1}{n+1}\binom{2 n}{n}$ is an integer for all integers $n \geq 1$.
$\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{n+1} \cdot \frac{(2 n)!}{(n!)^{2}}=\frac{(2 n)!}{(n+1)!n!}=\frac{(2 n)!(2 n+1-2 n)}{(n+1)!n!}=\frac{(2 n)!(2 n+1)}{(n+1)!n!}-\frac{(2 n)!(2 n)}{(n+1)!n!}=\frac{(2 n+1)!}{(n+1)!n!}-\frac{2 n}{n} \cdot \frac{(2 n)!}{(n+1)!(n-1)!}=$ $\frac{(2 n+1)!}{(n+1)!(2 n+1)-(n+1))!}-2 \cdot \frac{(2 n)!}{(n+1)!(2 n-(n+1))!}=\binom{2 n+1}{n+1}-2\binom{2 n}{n+1}$.
As both $\binom{2 n+1}{n+1}$ and $\binom{2 n}{n+1}$ are integers for all integers $n \geq 1$, we have $\frac{1}{n+1}\binom{2 n}{n}$ is an integer for all integers $n \geq 1$ as well.
7. Find matrices B and C such that $B^{3}+C^{3}=\left[\begin{array}{rr}1 & -1 \\ 0 & 5\end{array}\right]$.

Let $A=\left[\begin{array}{rr}1 & -1 \\ 0 & 5\end{array}\right]$. Then the characteristic equation of A is $\lambda^{2}-6 \lambda+5=0$. By the Cayley-Hamilton Theorem, we have $A^{2}-6 A+5 I=0$. Multiplying both sides by A, we obtain $A^{3}-6 A^{2}+5 A=0$. Now consider $(A-2 I)^{3}$. We have $(A-2 I)^{3}=A^{3}-6 A^{2}+12 A-8 I=A^{3}-6 A^{2}+5 A+7 A-8 I=7 A-8 I$. So, we have $7 A=(A-2 I)^{3}+8 I$, or $A=\left(\frac{1}{\sqrt[3]{7}}(A-2 I)\right)^{3}+\left(\frac{2}{\sqrt[3]{7}} I\right)$.
Thus, let $B=\frac{1}{\sqrt[3]{7}}(A-2 I)=\left[\begin{array}{rr}-\frac{1}{\sqrt[3]{7}} & -\frac{1}{\sqrt[3]{7}} \\ 0 & \frac{3}{\sqrt[3]{7}}\end{array}\right]$ and $C=\frac{2}{\sqrt[3]{7}} I=\left[\begin{array}{cc}\frac{2}{\sqrt[3]{7}} & 0 \\ 0 & \frac{2}{\sqrt[3]{7}}\end{array}\right]$.

