2007 ICMC Solutions

1. Let p and q be distinct primes. Find a polynomial with integer coefficients that has $\sqrt{p}+\sqrt{q}$ as a root.

Set $x=\sqrt{p}+\sqrt{q}$. Then $x-\sqrt{p}=\sqrt{q}$. Squaring both sides we obtain $x^{2}-2 x \sqrt{p}+p=q$, or $-2 x \sqrt{p}=q-p-x^{2}=$ $-x^{2}+(q-p)$. Square both sides again to get $4 p x^{2}=x^{4}-2(q-p) x^{2}+(q-p)^{2}$. So, $f(x)=x^{4}-2(q+p) x^{2}+(q-p)^{2}$ will suffice.
2. What is the value of the positive integer n for which the least common multiple of 36 and n is 500 greater than the greatest common divisor of 36 and n ?
We know that $\operatorname{gcd}(36, n)=x$ and $\operatorname{lcm}(36, n)=500+x$. Now, since x is a divisor of 36 , we have the following possibilities for x : $1,2,3,4,6,9,12,18,36$. Now, 36 must also divide $500+x$; by experimentation we get $x=4$. This tells us that $n=4 b$ and that $4 b$ must divide 504. Hence, b must divide 126 . However, $n=4 b$ cannot have 3 as a factor; since $126=2 \cdot 3^{2} \cdot 7$, the possible values of b are $1,2,7$, and 14 . We quickly see 14 is the only possibility. Hence, $n=4 \cdot 2 \cdot 7=56$.
3. Evaluate: $\lim _{x \rightarrow \infty}(x+2) \cdot \int_{x}^{3 x} \frac{d t}{t \sqrt{t^{4}+1}}$.

For $x \leq t \leq 3 x$, we have $0 \leq \frac{1}{t \sqrt{t^{4}+1}} \leq \frac{1}{x \sqrt{x^{4}+1}}$. Hence, $0<\int_{x}^{3 x} \frac{d t}{t \sqrt{t^{4}+1}} \leq \int_{x}^{3 x} \frac{d t}{x \sqrt{x^{4}+1}}=\frac{1}{x \sqrt{x^{4}+1}} \cdot \int_{x}^{3 x} d t=\frac{1}{x \sqrt{x^{4}+1}} \cdot(2 x)=$ $\frac{2}{\sqrt{x^{4}+1}}$. Thus, $0 \leq \lim _{x \rightarrow \infty}(x+2) \cdot \int_{x}^{3 x} \frac{d t}{t \sqrt{t^{4}+1}} \leq \lim _{x \rightarrow \infty}(x+2) \cdot \frac{2}{\sqrt{x^{4}+1}}=0$. So, $\lim _{x \rightarrow \infty}(x+2) \cdot \int_{x}^{3 x} \frac{d t}{t \sqrt{t^{4}+1}}=0$.
4. Answer the following.
(a) Let p be a fixed prime. Suppose an integer a is selected at random. What is the probability that a is divisible by p ? (Think about the possible remainders when dividing by p.)
Reduce the integers modulo p, obtaining a uniform distribution over the set $\{0,1, \ldots, p-1\}$. The probability a is divisible by p is the same as the probability of selecting 0 from $\{0,1, \ldots, p-1\}$, which is $\frac{1}{p}$.
(b) Let p be a fixed prime. Suppose two integers a and b are selected at random. What is the probability that a and b are both divisible by p ?
Selecting a and b are independent events. So, using part (a), we see the probability is $\frac{1}{p} \cdot \frac{1}{p}=\frac{1}{p^{2}}$.
(c) Suppose two integers a and b are selected at random. Show that the probability that a and b are relatively prime is $\prod_{p \in P}\left(1-\frac{1}{p^{2}}\right)$, where P is the set of all primes.
For each prime p, the probability a and b both have p as a factor is $\frac{1}{p^{2}}$; hence, the probability a and b are not both divisible by p is $1-\frac{1}{p^{2}}$. Now, if p_{1} and p_{2} are distinct primes, whether or not p_{1} divides both a and b is independent from whether or not p_{2} divides a and b. Hence, the probability that neither p_{1} nor p_{2} divide both a and b is $\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right)$. Continuing, we see that the probability that a and b have no prime factor in common (and hence are relatively prime) is $\prod_{p \in P}\left(1-\frac{1}{p^{2}}\right)$, where P is the set of all primes.
5. Let A be an $n \times n$ matrix such that $a_{i j}=1$ when $i \neq j$, and $a_{i j}=0$ when $i=j$. In other words, $A=\left[\begin{array}{cccc}0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 0\end{array}\right]$. Find A^{-1}. (Using the matrix $B=\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1\end{array}\right]$ may be helpful.)
First, note that $A=B-I$, where I is the $n \times n$ identity matrix, and that $B^{2}=n B$. For any real number r, we see $(B-I)(r B-I)=r B^{2}-(r+1) B+I=(r n-(r+1)) B+I$. So, $r B-I$ will be the inverse of $B-I$ if $r n-(r+1)=0$, or $r=\frac{1}{n-1}$. Hence, $A^{-1}=\frac{1}{n-1} B-I=\left[\begin{array}{llll}\frac{2-n}{n-1} & \frac{1}{n-1} & \cdots & \frac{1}{n-1} \\ \frac{1}{n-1} & \frac{2-n}{n-1} & \cdots & \frac{1}{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n-1} & \frac{1}{n-1} & \cdots & \frac{2-n}{n-1}\end{array}\right]$.
6. Let g and h be noncommuting elements in a group of odd order. If g and h satisfy the relations $g^{3}=e$ and $g h g^{-1}=h^{3}$, determine the order of h.
Note that $h^{9}=\left(g h g^{-1}\right)^{3}=g h^{3} g^{-1}=g\left(g h g^{-1}\right) g^{-1}=g^{2} h g^{-2}$. So, $h^{27}=\left(g h g^{-1}\right)^{9}=g h^{9} g^{-1}=g\left(g h g^{-1}\right)^{3} g^{-1}=$ $g\left(g^{2} h g^{-1}\right) g^{-1}=g^{3} h g^{-3}$. Since $g^{3}=e, h^{27}=h$, or $h^{26}=e$. Since the group has odd order, the only possibilities for the order of h are 1 and 13 . Since g and h do not commute, $h \neq e$; hence, $|h|=13$.

