2007 ICMC Solutions

1. Let p and q be distinct primes. Find a polynomial with integer coefficients that has $\sqrt{p} + \sqrt{q}$ as a root.

Set $x = \sqrt{p} + \sqrt{q}$. Then $x - \sqrt{p} = \sqrt{q}$. Squaring both sides we obtain $x^2 - 2x\sqrt{p} + p = q$, or $-2x\sqrt{p} = q - p - x^2 = -x^2 + (q-p)$. Square both sides again to get $4px^2 = x^4 - 2(q-p)x^2 + (q-p)^2$. So, $f(x) = x^4 - 2(q+p)x^2 + (q-p)^2$ will suffice.

2. What is the value of the positive integer n for which the least common multiple of 36 and n is 500 greater than the greatest common divisor of 36 and n?

We know that gcd(36, n) = x and lcm(36, n) = 500 + x. Now, since x is a divisor of 36, we have the following possibilities for x: 1, 2, 3, 4, 6, 9, 12, 18, 36. Now, 36 must also divide 500 + x; by experimentation we get x = 4. This tells us that n = 4b and that 4b must divide 504. Hence, b must divide 126. However, n = 4b cannot have 3 as a factor; since $126 = 2 \cdot 3^2 \cdot 7$, the possible values of b are 1, 2, 7, and 14. We quickly see 14 is the only possibility. Hence, $n = 4 \cdot 2 \cdot 7 = 56$.

3. Evaluate: $\lim_{x \to \infty} (x+2) \cdot \int_x^{3x} \frac{dt}{t\sqrt{t^4+1}}.$

For $x \le t \le 3x$, we have $0 \le \frac{1}{t\sqrt{t^4+1}} \le \frac{1}{x\sqrt{x^4+1}}$. Hence, $0 < \int_x^{3x} \frac{dt}{t\sqrt{t^4+1}} \le \int_x^{3x} \frac{dt}{x\sqrt{x^4+1}} = \frac{1}{x\sqrt{x^4+1}} \cdot \int_x^{3x} dt = \frac{1}{x\sqrt{x^4+1}} \cdot (2x) = \frac{2}{\sqrt{x^4+1}}$. Thus, $0 \le \lim_{x \to \infty} (x+2) \cdot \int_x^{3x} \frac{dt}{t\sqrt{t^4+1}} \le \lim_{x \to \infty} (x+2) \cdot \frac{2}{\sqrt{x^4+1}} = 0$. So, $\lim_{x \to \infty} (x+2) \cdot \int_x^{3x} \frac{dt}{t\sqrt{t^4+1}} = 0$.

- 4. Answer the following.
 - (a) Let p be a fixed prime. Suppose an integer a is selected at random. What is the probability that a is divisible by p? (Think about the possible remainders when dividing by p.) Reduce the integers modulo p, obtaining a uniform distribution over the set $\{0, 1, ..., p-1\}$. The probability a is divisible by p is the same as the probability of selecting 0 from $\{0, 1, ..., p-1\}$, which is $\frac{1}{2}$.
 - (b) Let p be a fixed prime. Suppose two integers a and b are selected at random. What is the probability that a and b are both divisible by p?

Selecting a and b are independent events. So, using part (a), we see the probability is $\frac{1}{p} \cdot \frac{1}{p} = \frac{1}{p^2}$.

(c) Suppose two integers a and b are selected at random. Show that the probability that a and b are relatively prime is $\prod_{p \in P} \left(1 - \frac{1}{n^2}\right)$, where P is the set of all primes.

For each prime p, the probability a and b both have p as a factor is $\frac{1}{p^2}$; hence, the probability a and b are not both divisible by p is $1 - \frac{1}{p^2}$. Now, if p_1 and p_2 are distinct primes, whether or not p_1 divides both a and b is independent from whether or not p_2 divides a and b. Hence, the probability that neither p_1 nor p_2 divide both a and b is $\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)$. Continuing, we see that the probability that a and b have no prime factor in common (and hence are relatively prime) is $\prod_{p \in P} \left(1 - \frac{1}{p^2}\right)$, where P is the set of all primes.

5. Let A be an $n \times n$ matrix such that $a_{ij} = 1$ when $i \neq j$, and $a_{ij} = 0$ when i = j. In other words, $A = \begin{bmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 0 \end{bmatrix}$.

Find
$$A^{-1}$$
. (Using the matrix $B = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$ may be helpful.)

First, note that A = B - I, where I is the $n \times n$ identity matrix, and that $B^2 = nB$. For any real number r, we see $(B - I)(rB - I) = rB^2 - (r+1)B + I = (rn - (r+1))B + I$. So, rB - I will be the inverse of B - I if rn - (r+1) = 0, $\begin{bmatrix} \frac{2-n}{n-1} & \frac{1}{2-n} & \cdots & \frac{1}{n-1} \\ \frac{2-n}{2-n} & \cdots & \frac{1}{n-1} \end{bmatrix}$

or
$$r = \frac{1}{n-1}$$
. Hence, $A^{-1} = \frac{1}{n-1}B - I = \begin{bmatrix} \frac{1}{n-1} & \frac{2-n}{n-1} & \cdots & \frac{1}{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n-1} & \frac{1}{n-1} & \cdots & \frac{2-n}{n-1} \end{bmatrix}$

6. Let g and h be noncommuting elements in a group of odd order. If g and h satisfy the relations $g^3 = e$ and $ghg^{-1} = h^3$, determine the order of h.

Note that $h^9 = (ghg^{-1})^3 = gh^3g^{-1} = g(ghg^{-1})g^{-1} = g^2hg^{-2}$. So, $h^{27} = (ghg^{-1})^9 = gh^9g^{-1} = g(ghg^{-1})^3g^{-1} = g(g^2hg^{-1})g^{-1} = g^3hg^{-3}$. Since $g^3 = e$, $h^{27} = h$, or $h^{26} = e$. Since the group has odd order, the only possibilities for the order of h are 1 and 13. Since g and h do not commute, $h \neq e$; hence, |h| = 13.