Spring 2013 Indiana Collegiate Mathematics Competition (ICMC) Exam

Mathematical Association of America – Indiana Section

Written by: The Mathematics Faculty of Indiana University – East $_{\rm Edited\ by:\ Justin\ Gash\ and\ Stacy\ Hoehn,\ Franklin\ College}$

PROBLEM 1

Define a sequence (s_n) recursively as follows: Let $s_1 = 1$ and for $n \ge 1$, let $s_{n+1} = \sqrt{1+s_n}$. Prove that (s_n) converges, and then find the limit.

Let \mathcal{C} be a non-empty collection (possibly infinite) of compact subsets of \mathbb{R} .

- (1) Prove that $K = \bigcap_{C \in \mathcal{C}} C$ is a compact set. (2) Give an example that illustrates that the union of a family of compact sets need not be compact.

Assume A and B are two sets with m and n elements, respectively.

(1) How many one-to-one functions are there from A and B?

(2) How many one-to-one and onto functions are there from A to B?

Let p and q be distinct prime numbers. Find the number of generators of the group \mathbb{Z}_{pq} .

Let G be a group and H a subgroup of G with index (G:H) = 2. Prove that H is a normal subgroup of G.

The Fibonacci numbers are defined as

and

$$f_{n+1} = f_n + f_{n-1}$$

 $f_1 = f_2 = 1$

for $n \geq 3$.

(1) List f_1, f_2, \ldots, f_7 . (2) Illustrate, using the list from (a), that $f_{2n+1} = f_{n+1}^2 + f_n^2$ for n = 1, 2, 3. (3) Prove that $f_{2n+1} = f_{n+1}^2 + f_n^2$ for all $n \in \mathbb{N}$. Show work to be graded below, and use the reverse side of the page to continue if necessary.

Let a, b, m, M be real numbers with $0 < m \le a \le b \le M$, prove that $2\sqrt{mM} = 2\sqrt{ab}$

$$\frac{2\sqrt{mM}}{m+M} \le \frac{2\sqrt{ab}}{a+b}$$

A soccer ball is stitched together using white hexagons and black pentagons. Each pentagon borders five hexagons. Each hexagon borders three other hexagons and three pentagons. Each vertex is of valence 3 (meaning that at each corner of a hexagon or pentagon, exactly three hexagons or pentagons meet). How many hexagons and how many pentagons are needed to make a soccer ball? **Hint:** Euler's Polyhedron Formula states that V - E + F = 2, where V is the number of vertices, E is the number of edges (i.e., the line adjoining two vertices) and F is the number of faces (hexagons or pentagons).