Spring 2013 Indiana Collegiate Mathematics Competition (ICMC) Exam

Mathematical Association of America - Indiana Section

Written by: The Mathematics Faculty of Indiana University - East Edited by: Justin Gash and Stacy Hoehn, Franklin College

Define a sequence $\left(s_{n}\right)$ recursively as follows: Let $s_{1}=1$ and for $n \geq 1$, let $s_{n+1}=$ $\sqrt{1+s_{n}}$. Prove that $\left(s_{n}\right)$ converges, and then find the limit.

Show work to be graded below, and use the reverse side of the page to continue if necessary.

Let \mathcal{C} be a non-empty collection (possibly infinite) of compact subsets of \mathbb{R}.
(1) Prove that $K=\bigcap_{C \in \mathcal{C}} C$ is a compact set.
(2) Give an example that illustrates that the union of a family of compact sets need not be compact.
Show work to be graded below, and use the reverse side of the page to continue if necessary.

Assume A and B are two sets with m and n elements, respectively.
(1) How many one-to-one functions are there from A and B ?
(2) How many one-to-one and onto functions are there from A to B ?

Show work to be graded below, and use the reverse side of the page to continue if necessary.

Let p and q be distinct prime numbers. Find the number of generators of the group $\mathbb{Z}_{p q}$.

Show work to be graded below, and use the reverse side of the page to continue if necessary.

Let G be a group and H a subgroup of G with index $(G: H)=2$. Prove that H is a normal subgroup of G.

Show work to be graded below, and use the reverse side of the page to continue if necessary.

The Fibonacci numbers are defined as

$$
f_{1}=f_{2}=1
$$

and

$$
f_{n+1}=f_{n}+f_{n-1}
$$

for $n \geq 3$.
(1) List $f_{1}, f_{2}, \ldots, f_{7}$.
(2) Illustrate, using the list from (a), that $f_{2 n+1}=f_{n+1}^{2}+f_{n}^{2}$ for $n=1,2,3$.
(3) Prove that $f_{2 n+1}=f_{n+1}^{2}+f_{n}^{2}$ for all $n \in \mathbb{N}$.

Show work to be graded below, and use the reverse side of the page to continue if necessary.

Let a, b, m, M be real numbers with $0<m \leq a \leq b \leq M$, prove that

$$
\frac{2 \sqrt{m M}}{m+M} \leq \frac{2 \sqrt{a b}}{a+b}
$$

Show work to be graded below, and use the reverse side of the page to continue if necessary.

A soccer ball is stitched together using white hexagons and black pentagons. Each pentagon borders five hexagons. Each hexagon borders three other hexagons and three pentagons. Each vertex is of valence 3 (meaning that at each corner of a hexagon or pentagon, exactly three hexagons or pentagons meet). How many hexagons and how many pentagons are needed to make a soccer ball? Hint: Euler's Polyhedron Formula states that $V-E+F=2$, where V is the number of vertices, E is the number of edges (i.e., the line adjoining two vertices) and F is the number of faces (hexagons or pentagons).

Show work to be graded below, and use the reverse side of the page to continue if necessary.

