Spring 2012 Indiana Collegiate Mathematics Competition (ICMC) Exam

Mathematical Association of America - Indiana Section

Written by: Ahmed Mohammed, Ball State University Edited by: Justin Gash, Franklin College

Show that n^{2} divides $(n+1)^{n}-1$ for any positive integer n.
Show work to be graded below, and use the reverse side of the page to continue if necessary.

How many zeros are at the end of 213 !?
Show work to be graded below, and use the reverse side of the page to continue if necessary.

Let $p(x)=a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ be a polynomial of degree $n \geq 2$, with integer coefficients, such that a_{0}, a_{1}, a_{n} and $a_{2}+\cdots+a_{n}$ are odd integers. Show that $p(x)$ has no rational root. Give example to show that the conclusion may not be true if any of a_{0}, a_{1}, a_{n} or $a_{2}+\cdots+a_{n}$ is even.

Show work to be graded below, and use the reverse side of the page to continue if necessary.

Let A be an $n \times n$ matrix whose diagonal entries are all equal to the same real number $\alpha \in \mathbb{R}$ and all other entries are equal to $\beta \in \mathbb{R}$. Show that A is diagonalizable, and compute the determinant of A.

Show work to be graded below, and use the reverse side of the page to continue if necessary.

Let G be a group of order 26. If G has a normal subgroup of order 2 , show that G is a cyclic group.

Show work to be graded below, and use the reverse side of the page to continue if necessary.

Show that for any positive integer k, the following is an irrational number.

$$
\sum_{n=0}^{\infty} \frac{1}{(n!)^{k}}
$$

Show work to be graded below, and use the reverse side of the page to continue if necessary.

Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} n x\left(1-x^{2}\right)^{n} f(x) d x=\frac{1}{2} f(0)
$$

Show work to be graded below, and use the reverse side of the page to continue if necessary.

Recall that a function $f(x, y)$ is said to be harmonic in an open subset \mathcal{O} of the plane if it is twice continuously differentiable in \mathcal{O} and $f_{x x}(x, y)+f_{y y}(x, y)=0$ for all (x, y) in \mathcal{O}. Let \mathcal{R} be the region in the plane given by

$$
\mathcal{R}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+(y+1)^{2} \leq 9 \quad \text { and } x^{2}+(y-1)^{2} \geq 1\right\} .
$$

Show that if f is harmonic in an open disk containing \mathcal{R}, then

$$
\iint_{\mathcal{R}} f(x, y) d x d y=9 \pi f(0,-1)-\pi f(0,1)
$$

Show work to be graded below, and use the reverse side of the page to continue if necessary.

