Suppose that the points P and Q are randomly selected in the interval $[0,2]$. What is $\operatorname{Pr}\left[|\overline{P Q}| \leq \frac{1}{3}\right.$?
Show work to be graded below, and use the reverse side of the page to continue if necessary

Show that the Maclaurin series of

$$
f(x)=\frac{x}{1-x-x^{2}}
$$

is equal to $\sum_{n=1}^{\infty} f_{n} x^{n}$, where $f_{1}=1, f_{2}=1$, and $f_{n}=f_{n-1}+f_{n-2}$.
Show work to be graded below, and use the reverse side of the page to continue if necessary

Let $T=\{1,2,3,4,5,6,7,8\}$. Let the set S be defined as follows.

$$
S=\{f \mid f: T \rightarrow T \text { is a bijection }\}
$$

with binary operation function composition. Let $\sigma \in S$. Suppose that σ^{3} is defined as follows.

$$
\begin{aligned}
\sigma^{3}(1) & =2 \\
\sigma^{3}(2) & =3 \\
\sigma^{3}(3) & =5 \\
\sigma^{3}(4) & =6 \\
\sigma^{3}(5) & =7 \\
\sigma^{3}(6) & =1 \\
\sigma^{3}(7) & =8 \\
\sigma^{3}(8) & =4
\end{aligned}
$$

What is σ ?
Show work to be graded below, and use the reverse side of the page to continue if necessary

Show that $\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1$.
Show work to be graded below, and use the reverse side of the page to continue if necessary

Suppose that n is a composite number, $n>0$ and $n \neq 4$. Show that $n \mid(n-1)$!.
Show work to be graded below, and use the reverse side of the page to continue if necessary

Suppose that $a, b \in \mathbb{R}$, with $a<b$. Suppose that $f:(a, b) \rightarrow \mathbb{R}$. Suppose that f is increasing and satisfies the property that for all $\lambda \in(0,1)$ and $x, y \in(a, b)$

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Prove that f is continuous on (a, b).
Show work to be graded below, and use the reverse side of the page to continue if necessary

Let $\mathbb{Z}_{\geq a}$ be equal to the set $\{x \mid x \in \mathbb{Z}, x \geq a\}$. It is known that there is a $1-1$ correspondence $F:\left(\mathbb{Z}_{\geq 0}\right)^{\times 3} \rightarrow \mathbb{Z}_{\geq 1}$. Find a formula for F.

Show work to be graded below, and use the reverse side of the page to continue if necessary

