1. Let p and q be distinct primes. Find a polynomial with integer coefficients that has $\sqrt{p}+\sqrt{q}$ as a root.
2. What is the value of the positive integer n for which the least common multiple of 36 and n is 500 greater than the greatest common divisor of 36 and n ?
3. Evaluate: $\lim _{x \rightarrow \infty}(x+2) \cdot \int_{x}^{3 x} \frac{d t}{t \sqrt{t^{4}+1}}$.
4. Answer the following.
(a) Let p be a fixed prime. Suppose an integer a is selected at random. What is the probability that a is divisible by p ? (Think about the possible remainders when dividing by p.)
(b) Let p be a fixed prime. Suppose two integers a and b are selected at random. What is the probability that a and b are both divisible by p ?
(c) Suppose two integers a and b are selected at random. Show that the probability that a and b are relatively prime is $\prod_{p \in P}\left(1-\frac{1}{p^{2}}\right)$, where P is the set of all primes.
5. Let A be an $n \times n$ matrix such that $a_{i j}=1$ when $i \neq j$, and $a_{i j}=0$ when $i=$ j. In other words, $A=\left[\begin{array}{ccccc}0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 0\end{array}\right]$. Find A^{-1}. (Using the matrix $B=$ $\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1\end{array}\right]$ may be helpful.)
6. Let g and h be noncommuting elements in a group of odd order. If g and h satisfy the relations $g^{3}=e$ and $g h g^{-1}=h^{3}$, determine the order of h.
